Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & 3 & - 2 \\ 0 & 9 & - 7 \\ 0 & - 5 & 4\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 3 & 1 & 0 \\ - 2 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 + 3 R_1\text{ and }R_3 \to R_3 - 2 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 3 & - 2 \\ 0 & 1 & - \frac{7}{9} \\ 0 & - 5 & 4\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{9} & 0 \\ - 2 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to \frac{1}{9} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{3} \\ 0 & 1 & - \frac{7}{9} \\ 0 & 0 & \frac{1}{9}\end{bmatrix} = \begin{bmatrix}0 & - \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{9} & 0 \\ - \frac{1}{3} & \frac{5}{9} & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - 3 R_2\text{ and }R_3 \to R_3 + 5 R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{3} \\ 0 & 1 & - \frac{7}{9} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}0 & - \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{9} & 0 \\ - 3 & 5 & 9\end{bmatrix} A \left[\text{ Applying }R_3 \to 9 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & - 2 & - 3 \\ - 2 & 4 & 7 \\ - 3 & 5 & 9\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 + \frac{7}{9} R_3\text{ and }R_1 \to R_1 - \frac{1}{3} R_3 \right]\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix}1 & - 2 & - 3 \\ - 2 & 4 & 7 \\ - 3 & 5 & 9\end{bmatrix} \]
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If for the matrix A, A3 = I, then A−1 = _____________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.