Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{3} \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to \frac{1}{3} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{3} \\ 0 & 3 & \frac{2}{3} \\ 0 & 4 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{3} & 0 & 0 \\ - \frac{2}{3} & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - 2 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{3} \\ 0 & 1 & \frac{2}{9} \\ 0 & 4 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{3} & 0 & 0 \\ - \frac{2}{9} & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to \frac{1}{3} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{3} \\ 0 & 1 & \frac{2}{9} \\ 0 & 0 & \frac{1}{9}\end{bmatrix} = \begin{bmatrix}\frac{1}{3} & 0 & 0 \\ - \frac{2}{9} & \frac{1}{3} & 0 \\ \frac{8}{9} & \frac{- 4}{3} & 1\end{bmatrix} A \left[\text{ Applying }R_3 \to R_3 - 4 R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{3} \\ 0 & 1 & \frac{2}{9} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{3} & 0 & 0 \\ - \frac{2}{9} & \frac{1}{3} & 0 \\ 8 & - 12 & 9\end{bmatrix} A \left[\text{ Applying }R_3 \to 9 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}3 & - 4 & 3 \\ - 2 & 3 & - 2 \\ 8 & - 12 & 9\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - \frac{2}{9} R_3\text{ and }R_1 \to R_1 + \frac{1}{3} R_3 \right]\]
\[ \therefore A^{- 1} = \begin{bmatrix}3 & - 4 & 3 \\ - 2 & 3 & - 2 \\ 8 & - 12 & 9\end{bmatrix} \]
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If A, B are two n × n non-singular matrices, then __________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A and B are invertible matrices, then which of the following is not correct?
|A–1| ≠ |A|–1, where A is non-singular matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.