मराठी

For the Following Pair of Matrix Verity that ( a B ) − 1 = B − 1 a − 1 : a = [ 2 1 5 3 ] and B [ 4 5 3 4 ] - Mathematics

Advertisements
Advertisements

प्रश्न

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]

बेरीज

उत्तर

\[\text{ We have, }A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B = \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
\[ \therefore AB = \begin{bmatrix}11 & 14 \\ 29 & 37\end{bmatrix}\]
Now,
\[\left| AB \right| = 1\]
\[\text{ Since, }\left| AB \right| \neq 0\]
\[\text{ Hence, AB is invertible . Let }C_{ij}\text{ be the cofactor of }a_{in}\text{ in AB = }\left[ a_{ij} \right]\]
\[ C_{11} = 37 , C_{12} = - 29, C_{21} = - 14\text{ and }C_{22} = 11\]
\[adj(AB) = \begin{bmatrix}37 & - 14 \\ - 29 & 11\end{bmatrix}\]
\[ \therefore \left( AB \right)^{- 1} = \begin{bmatrix}37 & - 14 \\ - 29 & 11\end{bmatrix} . . . \left( 1 \right)\]
\[\left| B \right| = 1\]
\[\text{  Since, }\left| B \right| \neq 0\]
\[\text{ Hence, B is invertible . Let }C_{ij}\text{ be the cofactor of }a_{in}\text{ in B = }\left[ a_{ij} \right]\]
\[ C_{11} = 4 , C_{12} = - 3, C_{21} = - 5\text{ and }C_{22} = 4\]
\[adjB = \begin{bmatrix}4 & - 5 \\ - 3 & 4\end{bmatrix}\]
\[ \therefore B^{- 1} = \begin{bmatrix}4 & - 5 \\ - 3 & 4\end{bmatrix}\]
\[\left| A \right| = 1\]
\[\text{ Since, }\left| A \right| \neq 0\]
\[\text{ Hence, A is invertible . Let }C_{ij}\text{ be the cofactor of }a_{in}\text{ in A = }\left[ a_{ij} \right]\]
\[ C_{11} = 3 , C_{12} = - 5, C_{21} = - 1\text{ and }C_{22} = 2\]
\[adjA = \begin{bmatrix}3 & - 1 \\ - 5 & 2\end{bmatrix}\]
\[ \therefore A^{- 1} = \begin{bmatrix}3 & - 1 \\ - 5 & 2\end{bmatrix}\]
\[\text{ Now, }B^{- 1} A^{- 1} = \begin{bmatrix}37 & - 14 \\ - 29 & 11\end{bmatrix} . . . \left( 2 \right)\]
\[\text{ From eq . }\left( 1 \right)\text{ and }\left( 2 \right),\text{ we have}\]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
Hence verified .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 10.2 | पृष्ठ २३

संबंधित प्रश्‍न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


For the matrix 

\[A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{bmatrix}\] , show that A (adj A) = O.

Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If A is a singular matrix, then adj A is ______.


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×