मराठी

For the Matrix a = ⎡ ⎢ ⎣ 1 1 1 1 2 − 3 2 − 1 3 ⎤ ⎥ ⎦ . Show that a − 3 − 6 a 2 + 5 a + 11 I 3 = O . Hence, Find A−1. - Mathematics

Advertisements
Advertisements

प्रश्न

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

उत्तर

\[A = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1& 3 \end{bmatrix} \]

\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{vmatrix} = \left( 1 \times 3 \right) - \left( 1 \times 9 \right) + \left( 1 \times - 5 \right) = 3 - 9 - 5 = - 11 \]

\[\text{ Since, }\left| A \right| \neq 0\]

\[\text{Hence, }A^{- 1}\text{ exists . }\]

Now, 

\[ A^2 = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 + 1 + 2 & 1 + 2 - 1 & 1 - 3 + 3\\1 + 2 - 6 & 1 + 4 + 3 & 1 - 6 - 9\\2 - 1 + 6 & 2 - 2 - 3 & 2 + 3 + 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\ 7 & - 3 & 14 \end{bmatrix}\]

\[\text{ and }A^3 = A^2 . A = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\7 & - 3 & 14 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 + 2 + 2 & 4 + 4 - 1 & 4 - 6 + 3\\ - 3 + 8 - 28 & - 3 + 16 + 14 & - 3 - 24 - 42\\ 7 - 3 + 28 & 7 - 6 - 14 & 7 + 9 + 42 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 1\\ - 23 & 27 & - 69\\ 32 & - 13 & 58 \end{bmatrix}\]

\[\text{ Now, }A^3 - 6 A^2 + 5A + 11 I_3 = \begin{bmatrix} 8 & 7 & 1 \\ - 23 & 27 & - 69 \\ 32 & - 13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ - 3 & 8 & - 14 \\ 7 & - 3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}\]

\[ = \begin{bmatrix} 8 - 24 + 5 + 11 & 7 - 12 + 5 + 0 & 1 - 6 + 5 + 0\\ - 23 + 18 + 5 + 0 & 27 - 48 + 10 + 11 & - 69 + 84 - 15 + 0\\ 32 - 42 + 10 + 0 & - 13 + 18 - 5 + 0 & 58 - 84 + 15 + 11 \end{bmatrix} \]

\[ = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O (\text{ Null matrix})\]

\[\text{ Again, }A^3 - 6 A^2 + 5A + 11 I_3 = O\]

\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 5A + 11 I_3 \right) = A^{- 1} \times O (\text{ Pre - multiplying both sides because }A^{- 1} exists) \]

\[ \Rightarrow \left( A^2 - 6A + 5 I_3 + 11 A^{- 1} \right) = 0\]

\[ \Rightarrow \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 - 14\\ 7 & - 3 & 14 \end{bmatrix} - 6\begin{bmatrix} 1 & 1 & 1\\1 & 2 &- 3\\2 & - 1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = - 11 A^{- 1} \]

\[ \Rightarrow \begin{bmatrix} 4 - 6 + 5 & 2 - 6 + 0 & 1 - 6 + 0\\ - 3 - 6 + 0 & 8 - 12 + 5 & - 14 + 18 + 0\\ 7 - 12 + 0 & - 3 + 6 + 0 & 14 - 18 + 5 \end{bmatrix} = - 11 A^{- 1} \]

\[ \Rightarrow A^{- 1} = - \frac{1}{11}\begin{bmatrix} 3 & - 4 & - 5\\- 9 & 1 & 4\\ - 5 & 3 & 1 \end{bmatrix} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 24 | पृष्ठ २४

संबंधित प्रश्‍न

For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


If A and B are invertible matrices, then which of the following is not correct?


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×