Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & 1 & 2 \\ 0 & - 2 & - 5 \\ 0 & 1 & - 3\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ - 3 & 1 & 0 \\ - 2 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - 3 R_1\text{ and }R_3 \to R_3 - 2 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 1 & 2 \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & - 3\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ \frac{3}{2} & - \frac{1}{2} & 0 \\ - 2 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to \frac{- 1}{2} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & - \frac{11}{2}\end{bmatrix} = \begin{bmatrix}- \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{3}{2} & - \frac{1}{2} & 0 \\ - \frac{7}{2} & \frac{1}{2} & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_3 \to R_3 - R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - \frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}- \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{3}{2} & - \frac{1}{2} & 0 \\ \frac{7}{11} & \frac{- 1}{11} & \frac{- 2}{11}\end{bmatrix} A \left[\text{ Applying }R_3 \to - \frac{2}{11} R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{- 2}{11} & \frac{5}{11} & \frac{- 1}{11} \\ \frac{- 1}{11} & \frac{- 3}{11} & \frac{5}{11} \\ \frac{7}{11} & \frac{- 1}{11} & \frac{- 2}{11}\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - \frac{5}{2} R_3\text{ and }R_1 \to R_1 + \frac{1}{2} R_3 \right]\]
\[ \Rightarrow A^{- 1} = \frac{1}{11}\begin{bmatrix}- 2 & 5 & - 1 \\ - 1 & - 3 & 5 \\ 7 & - 1 & - 2\end{bmatrix} \]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
Show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If A and B are invertible matrices, which of the following statement is not correct.
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.