मराठी

For the matrix A = [11112-32-13] show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1. - Mathematics

Advertisements
Advertisements

प्रश्न

For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.

बेरीज

उत्तर

A `= [(1,1,1),(1,2,-3),(2,-1,3)]`

`"A"^2 = [(1,1,1),(1,2,-3),(2,-1,3)] [(1,1,1),(1,2,-3),(2,-1,3)] = [(4,2,1),(-3,8,-14),(7,-3,14)]`

`"A"^3 = "A"^2 "A" = [(4,2,1),(-3,8,-14),(7,-3,14)] [(1,1,1),(1,2,-3),(2,-1,3)]`

`= [(8,7,1),(-23,27,-69),(32,-13,58)]`

`"LHS" = "A"^3 - 6"A"^2 + 5 "A" + 11 "I"`

`= [(8,7,1),(-23,27,-69),(32,-13,58)] - 6 [(4,2,1),(-3,8,-14),(7,-3,14)] + 5 [(1,1,1),(1,2,-3),(2,-1,3)] + 11 [(1,0,0),(0,1,0),(0,0,1)]`

`= [(8,7,1),(-23,27,-69),(32,-13,58)] - [(24,12,6),(-18,48,-84),(42,-18,84)] + [(5,5,5),(5,10,-15),(10,-5,15)] + [(11,0,0),(0,11,0),(0,0,11)]`

`= [(8 - 24 + 5 + 11, 7 - 12 + 5 + 0, 1 - 6 + 5 + 0),(-23 + 18 + 5 + 0, 27 - 48 + 10 + 11, -69 + 84 - 15 + 0),(32 - 42 + 10 + 0,-13 + 18 - 5 + 0, 58 - 84 + 15 + 11)]`

`= [(0,0,0),(0,0,0),(0,0,0)] = 0 ="RHS"`

`"A"^3 - 6"A"^2 + 5"A" + 11 "I" = 0`

`"A"^3 - 6"A"^2 + 5"A" = -11 "I"`

`"A"^2 "AA"^-1 = 6 "AAA"^-1 + 5 "AA"^-1 = 11"IA"^-1`

`11"A"^-1 = - "A"^2 + 6"A" - 5"I" = [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + 6 [(1,1,1),(1,2,-3),(2,-1,3)] - 5 [(1,0,0),(0,1,0),(0,0,1)]`

`= [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + [(6,6,6),(6,12,-18),(12,-6,18)] - [(5,0,0),(0,5,0),(0,0,5)]`

`= [(-3,4,5),(9,-1,-4),(5,-3,-1)]`

`"A"^-1 = 1/11 [(-3,4,5),(9,-1,-4),(5,-3,-1)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise 4.5 [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 4 Determinants
Exercise 4.5 | Q 15 | पृष्ठ १३२

संबंधित प्रश्‍न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is an invertible matrix, then which of the following is not true ?


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×