Advertisements
Advertisements
प्रश्न
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
उत्तर
A `= [(1,1,1),(1,2,-3),(2,-1,3)]`
`"A"^2 = [(1,1,1),(1,2,-3),(2,-1,3)] [(1,1,1),(1,2,-3),(2,-1,3)] = [(4,2,1),(-3,8,-14),(7,-3,14)]`
`"A"^3 = "A"^2 "A" = [(4,2,1),(-3,8,-14),(7,-3,14)] [(1,1,1),(1,2,-3),(2,-1,3)]`
`= [(8,7,1),(-23,27,-69),(32,-13,58)]`
`"LHS" = "A"^3 - 6"A"^2 + 5 "A" + 11 "I"`
`= [(8,7,1),(-23,27,-69),(32,-13,58)] - 6 [(4,2,1),(-3,8,-14),(7,-3,14)] + 5 [(1,1,1),(1,2,-3),(2,-1,3)] + 11 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(8,7,1),(-23,27,-69),(32,-13,58)] - [(24,12,6),(-18,48,-84),(42,-18,84)] + [(5,5,5),(5,10,-15),(10,-5,15)] + [(11,0,0),(0,11,0),(0,0,11)]`
`= [(8 - 24 + 5 + 11, 7 - 12 + 5 + 0, 1 - 6 + 5 + 0),(-23 + 18 + 5 + 0, 27 - 48 + 10 + 11, -69 + 84 - 15 + 0),(32 - 42 + 10 + 0,-13 + 18 - 5 + 0, 58 - 84 + 15 + 11)]`
`= [(0,0,0),(0,0,0),(0,0,0)] = 0 ="RHS"`
`"A"^3 - 6"A"^2 + 5"A" + 11 "I" = 0`
`"A"^3 - 6"A"^2 + 5"A" = -11 "I"`
`"A"^2 "AA"^-1 = 6 "AAA"^-1 + 5 "AA"^-1 = 11"IA"^-1`
`11"A"^-1 = - "A"^2 + 6"A" - 5"I" = [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + 6 [(1,1,1),(1,2,-3),(2,-1,3)] - 5 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + [(6,6,6),(6,12,-18),(12,-6,18)] - [(5,0,0),(0,5,0),(0,0,5)]`
`= [(-3,4,5),(9,-1,-4),(5,-3,-1)]`
`"A"^-1 = 1/11 [(-3,4,5),(9,-1,-4),(5,-3,-1)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
Find the inverse of the following matrix:
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.