हिंदी

If a = [ 2 3 5 − 2 ] Be Such that a − 1 = K a , Then Find the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.

उत्तर

\[A = \begin{bmatrix} 2 & 3\\5 & - 2 \end{bmatrix}\]
\[ \therefore \left| A \right| = \begin{vmatrix} 2 & 3\\5 & - 2 \end{vmatrix} = - 14 - 15 = - 19 \]
\[\text{ The value is non - zero, so }A^{- 1} \text{ exists .} \]
\[\text{ By definition, we have }\]
\[ A^{- 1} A = I [\text{ I is the identity matrix}]\]
\[ \Rightarrow kA . A = I [\text{ Substituting }A^{- 1} = kA]\]
\[ \Rightarrow k\begin{bmatrix} 2 & 3\\5 & - 2 \end{bmatrix}\begin{bmatrix} 2 & 3\\5 & - 2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\]
\[ \Rightarrow k\begin{bmatrix} 4 + 15 & 6 - 6\\10 - 10 & 15 + 4 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\]
\[ \Rightarrow k\begin{bmatrix} 19 & 0\\0 & 19 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\]
\[ \Rightarrow k = \frac{1}{19}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.3 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.3 | Q 19 | पृष्ठ ३५

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


If A and B are invertible matrices, then which of the following is not correct?


If A, B be two square matrices such that |AB| = O, then ____________.


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×