Advertisements
Advertisements
प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
उत्तर
A = `[(1,-1,2),(0,2,-3),(3,-2,4)]`
So, adj A `= [(A_11,A_21,A_31),(A_12,A_22,A_32),(A_13,A_23,A_33)]`
`= [(2,0,-1),(-9,-2,3),(-6,-1,2)]`
`abs A= 1(8 - 6) + 1(0 + 9) + 2 (0 - 6)`
`= -1 ne 0 -> "A"^-1` exists.
`C_11 = (-1)^(1+1) |(2,-3), (-2,4)| = 8 - 6 = 2`
`C12 = (-1)^(1+2) |(0,-3), (3,4)| = -(0 + 9) = -9`
`C_13 = (-1)^(1+3)|(0,2),(3,-2)| = 0 - 6 = -6`
`C_21 = (-1)^(2+1) |(-1,2), (-2,4)| = -(-4 + 4) = 0`
`C_22 = (-1)^(2+2) |(1,2), (3,4)| = 4 - 6 = -2`
`C_23 = (-1)^(2+3) |(1,-1), (3,-2)| = -(2+3) = -1`
`C_31 = (-1)^(3+1) |(-1,2), (2,-3)| = 3 - 4 = -1`
`C_32 = (-1)^(3+2) |(1,2), (0,-3)| = -(-3 - 0) = 3`
`C_33 = (-1)^(3+3)|(1,-1), (0,2)| = 2 + 0 = 2`
`A^-1 = 1/abs A (adjA) = 1/abs A [(A_11,A_21,A_31),(A_12,A_22,A_32),(A_13,A_23,A_33)]`
`= 1/-1[(2,0,-1),(-9,-2,3),(-6,-1,2)]`
`= [(-2,0,1),(9,2,-3),(6,1,-2)]`
APPEARS IN
संबंधित प्रश्न
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
A square matrix A is invertible if det A is equal to ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.