Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
उत्तर
\[A = \begin{bmatrix} 3 & - 2 \\4 & - 2 \end{bmatrix}\]
\[ \therefore A^2 = \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix}\]
Given:
\[ A^2 = \lambda A - 2I . . . \left( 1 \right)\]
\[ \Rightarrow \begin{bmatrix} 1 & - 2 \\ 4 & - 4 \end{bmatrix} = \lambda\begin{bmatrix} 3 & - 2 \\ 4 & - 2 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix} = \begin{bmatrix} 3\lambda & - 2\lambda\\4\lambda & - 2\lambda \end{bmatrix} - \begin{bmatrix} 2 & 0\\0 & 2 \end{bmatrix} \]
\[ \Rightarrow \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix} = \begin{bmatrix} 3\lambda - 2 & - 2\lambda\\4\lambda & - 2\lambda - 2 \end{bmatrix}\]
On equating corresponding terms, we get
\[ - 2\lambda = - 2\]
\[ \Rightarrow \lambda = 1 \]
\[\text{ On substituting } \lambda = 1\text{ in }\left( 1 \right),\text{ we get}\]
\[ A^2 = A - 2I \]
\[ \Rightarrow A^2 - A = - 2I\]
\[ \Rightarrow A - A^2 = 2I\]
\[ \Rightarrow A^{- 1} \left( A - A^2 \right) = A^{- 1} \times 2I \left(\text{ Pre - multiplying both sides with }A^{- 1} \right)\]
\[ \Rightarrow I - A = 2 A^{- 1} \]
\[2 A^{- 1} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & - 2\\4 & - 2 \end{bmatrix} = \begin{bmatrix} 1 - 3 & 0 + 2\\0 - 4 & 1 + 2 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{2}\begin{bmatrix} - 2 & 2\\ - 4 & 3 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
|A–1| ≠ |A|–1, where A is non-singular matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.