Advertisements
Advertisements
प्रश्न
Find the matrix X for which
उत्तर
\[Let A = \begin{bmatrix} 3 & 2\\7 & 5 \end{bmatrix}, B = \begin{bmatrix} - 1 & 1\\ - 2 & 1 \end{bmatrix} \text{ and }C = \begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix} 3 & 2\\7 & 5 \end{vmatrix} = 15 - 14 = 1 \]
\[\left| B \right| = \begin{vmatrix} - 1 & 1\\ - 2 & 1 \end{vmatrix} = - 1 + 2 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\text{ and }\left| B \right| \neq 0\]
\[\text{ Hence, A & B are invertible, so }A^{- 1}\text{ and }B^{- 1}\text{ exist }. \]
Cofactors of matrix A are
\[ A_{11} = 5 A_{12} = - 7 A_{21} = - 2 A_{22} = 3 \]
Now,
\[adj A = \begin{bmatrix} 5 & - 7\\ - 2 & 3 \end{bmatrix}T = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix} \]
Cofactors of matrix B are
\[ B_{11} = 1 B_{12} = 2 B_{21} = - 1 B_{22} = - 1\]
Now,
\[adj B = \begin{bmatrix} 1 & 2\\ - 1 & - 1 \end{bmatrix}^T = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix} \]
The given equation becomes AXB = C
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow \left( I \right)X\left( I \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 - 2 & - 2 + 1\\ 0 + 8 & 0 - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 0 & - 1\\ 8 & - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} - 16 & 3\\ 24 & - 5 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
If A and B are invertible matrices, then which of the following is not correct?
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.