हिंदी

Find the Matrix X for Which [ 3 2 7 5 ] X [ − 1 1 − 2 1 ] = [ 2 − 1 0 4 ] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 

उत्तर

\[Let A = \begin{bmatrix} 3 & 2\\7 & 5 \end{bmatrix}, B = \begin{bmatrix} - 1 & 1\\ - 2 & 1 \end{bmatrix} \text{ and }C = \begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix} 3 & 2\\7 & 5 \end{vmatrix} = 15 - 14 = 1 \]
\[\left| B \right| = \begin{vmatrix} - 1 & 1\\ - 2 & 1 \end{vmatrix} = - 1 + 2 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\text{ and }\left| B \right| \neq 0\]
\[\text{ Hence, A & B are invertible, so }A^{- 1}\text{ and }B^{- 1}\text{ exist }. \]
Cofactors of matrix A are
\[ A_{11} = 5 A_{12} = - 7 A_{21} = - 2 A_{22} = 3 \]
Now, 
\[adj A = \begin{bmatrix} 5 & - 7\\ - 2 & 3 \end{bmatrix}T = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix} \]
Cofactors of matrix B are
\[ B_{11} = 1 B_{12} = 2 B_{21} = - 1 B_{22} = - 1\]
Now, 
\[adj B = \begin{bmatrix} 1 & 2\\ - 1 & - 1 \end{bmatrix}^T = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix} \]
The given equation becomes AXB = C
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow \left( I \right)X\left( I \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 - 2 & - 2 + 1\\ 0 + 8 & 0 - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 0 & - 1\\ 8 & - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} - 16 & 3\\ 24 & - 5 \end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 32 | पृष्ठ २४

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If A is an invertible matrix, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


If A and B are invertible matrices, then which of the following is not correct?


A square matrix A is invertible if det A is equal to ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×