Advertisements
Advertisements
प्रश्न
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
उत्तर
\[\text{ We have, }A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
\[ \therefore AB = \begin{bmatrix}18 & 22 \\ 43 & 52\end{bmatrix}\]
\[\left| AB \right| = - 10\]
\[\text{Since, }\left| AB \right| \neq 0\]
\[\text{Hence, AB is invertible . Let } C_{ij}\text{ be the cofactor of }a_{in}\text{ in AB = }\left[ a_{ij} \right]\]
\[ C_{11} = 52 , C_{12} = - 43, C_{21} = - 22\text{ and }C_{22} = 18\]
\[adj\left( AB \right) = \begin{bmatrix}52 & - 43 \\ - 22 & 18\end{bmatrix}^T = \begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix}\]
\[ \therefore \left( AB \right)^{- 1} = - \frac{1}{10}\begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix} . . . \left( 1 \right)\]
\[\text{ Now, }B = \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
\[\left| B \right| = - 10\]
\[\text{ Since, }\left| B \right| \neq 0\]
\[\text{Hence, B is invertible . Let }C_{ij}\text{ be the cofactor of } a_{in}\text{ in B = }\left[ a_{ij} \right]\]
\[ C_{11} = 2 , C_{12} = - 3, C_{21} = - 6\text{ and }C_{22} = 4\]
\[adjB = \begin{bmatrix}2 & - 3 \\ - 6 & 4\end{bmatrix}^T = \begin{bmatrix}2 & - 6 \\ - 3 & 4\end{bmatrix}\]
\[ \therefore B^{- 1} = - \frac{1}{10}\begin{bmatrix}2 & - 6 \\ - 3 & 4\end{bmatrix}\]
\[\left| A \right| = 1\]
\[\text{Since, }\left| A \right| \neq 0\]
\[\text{ Hence, A is invertible . Let }C_{ij}\text{ be the cofactor of } a_{in}\text{ in A = }\left[ a_{ij} \right]\]
\[ C_{11} = 5 , C_{12} = - 7, C_{21} = - 2\text{ and }C_{22} = 3\]
\[adjA = \begin{bmatrix}5 & - 7 \\ - 2 & 3\end{bmatrix}^T = \begin{bmatrix}5 & - 2 \\ - 7 & 3\end{bmatrix}\]
\[ \therefore A^{- 1} = \begin{bmatrix}5 & - 2 \\ - 7 & 3\end{bmatrix}\]
\[\text{ Now, }B^{- 1} A^{- 1} = - \frac{1}{10}\begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix} . . . \left( 2 \right)\]
\[\text{From eq . }\left( 1 \right)\text{ and }\left( 2 \right),\text{ we have}\]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
Hence verified .
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
prove that \[A^{- 1} = A^3\]
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
A square matrix A is invertible if det A is equal to ____________.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.