Advertisements
Advertisements
प्रश्न
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
उत्तर
(i) \[ F(\alpha) = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow F( - \alpha) = \begin{bmatrix}\cos\left( - \alpha \right) & - \sin\left( - \alpha \right) & 0 \\ \sin\left( - \alpha \right) & \cos\left( - \alpha \right) & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[Now, \]
\[ C_{11} = \begin{vmatrix}\cos\alpha & 0 \\ 0 & 1\end{vmatrix} = \cos\alpha, C_{12} = - \begin{vmatrix}\sin\alpha & 0 \\ 0 & 1\end{vmatrix} = - \sin\alpha\text{ and }C_{13} = \begin{vmatrix}\sin\alpha & \cos\alpha \\ 0 & 0\end{vmatrix} = 0\]
\[ C_{21} = - \begin{vmatrix}- \sin\alpha & 0 \\ 0 & 1\end{vmatrix} = \sin\alpha, C_{22} = \begin{vmatrix}\cos\alpha & 0 \\ 0 & 1\end{vmatrix} = \cos\alpha\text{ and }C_{23} = - \begin{vmatrix}\cos\alpha & - \sin\alpha \\ 0 & 0\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}- \sin\alpha & 0 \\ \cos\alpha & 0\end{vmatrix} = 0, C_{32} = - \begin{vmatrix}\cos\alpha & 0 \\ \sin\alpha & 0\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}\cos\alpha & - \sin\alpha \\ \sin\alpha & \cos\alpha\end{vmatrix} = 1\]
\[ \Rightarrow adj\left\{ F(\alpha) \right\} = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}^T = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow \left| F(\alpha) \right| = 1\]
\[ \therefore \left[ F\left( \alpha \right) \right]^{- 1} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} . . . \left( 1 \right)\]
\[ \Rightarrow \left[ F\left( \alpha \right) \right]^{- 1} = F( - \alpha) \]
(ii) \[ G(\beta) = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[ \Rightarrow G( - \beta) = \begin{bmatrix}\cos\left( - \beta \right) & 0 & \sin\left( - \beta \right) \\ 0 & 1 & 0 \\ - \sin\left( - \beta \right) & 0 & \cos\left( - \beta \right)\end{bmatrix} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[Now, \]
\[ C_{11} = \begin{vmatrix}1 & 0 \\ 0 & \cos\beta\end{vmatrix} = \cos\beta, C_{12} = - \begin{vmatrix}0 & 0 \\ - \sin\beta & \cos\beta\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}0 & 1 \\ - \sin\beta & 0\end{vmatrix} = \sin\beta\]
\[ C_{21} = - \begin{vmatrix}0 & \sin\beta \\ 0 & \cos\beta\end{vmatrix} = 0, C_{22} = \begin{vmatrix}\cos\beta & \sin\beta \\ - \sin\beta & \cos\beta\end{vmatrix} = 1\text{ and }C_{23} = - \begin{vmatrix}\cos\beta & 0 \\ - \sin\beta & 0\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}0 & \sin\beta \\ 1 & 0\end{vmatrix} = - \sin\beta, C_{32} = - \begin{vmatrix}\cos\beta & \sin\beta \\ 0 & 0\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}\cos\beta & 0 \\ 0 & 1\end{vmatrix} = \cos\beta\]
\[adj\left\{ G(\beta) \right\} = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}^T = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[\left| G(\beta) \right| = 1\]
\[ \therefore G(\beta )^{- 1} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix} . . . \left( 2 \right) \]
\[ \Rightarrow G(\beta )^{- 1} = = G( - \beta) \]
(iii) \[ F(\alpha) = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow F( - \alpha) = \begin{bmatrix}\cos\left( - \alpha \right) & - \sin\left( - \alpha \right) & 0 \\ \sin\left( - \alpha \right) & \cos\left( - \alpha \right) & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} . . . \left( 3 \right)\]
\[G(\beta) = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[ \Rightarrow G( - \beta) = \begin{bmatrix}\cos\left( - \beta \right) & 0 & \sin\left( - \beta \right) \\ 0 & 1 & 0 \\ - \sin\left( - \beta \right) & 0 & \cos\left( - \beta \right)\end{bmatrix} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix} . . . \left( 4 \right)\]
\[ \left[ F(\alpha)G(\beta) \right]^{- 1} = \left[ G(\beta) \right]^{- 1} \left[ F(\alpha) \right]^{- 1} \]
\[ = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} \] [Using equation (1) and (2)]
\[ = G( - \beta)F( - \alpha) \] [Using equatio (3) and (4)]
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
|A–1| ≠ |A|–1, where A is non-singular matrix.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.