हिंदी

A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot - Mathematics

Advertisements
Advertisements

प्रश्न

A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.
योग

उत्तर

Let the number of tables, chairs and cots produced be x, y and z.

i. Then, the system of simultaneous equations produced is:

2x + 3y + 4z = 29

x + y + 2z = 13

3x + 2y + z = 16

ii. Part (i) equations are in matrix form as follows:

`[(2, 3, 4),(1, 1, 2),(3, 2, 1)][(x),(y),(z)] = [(29),(13),(16)]`

i.e., AX = B

`\implies` X = A–1B

I A I = 2(1 – 4) – 3(1 – 6) + 4(2 – 3)

= – 6 + 15 – 4

= 15 – 10

= 5 ≠ 0

As a result, the inverse exists.

Then, a11 = (–1)1+1(1 – 4) = – 3

a12 = (–1)1+2(1 – 6) = 5

a13 = (–1)1+3(2 – 3) = – 1

a21 = (–1)2+1(3 – 8) = 5

a22 = (–1)2+2(2 – 12) = – 10

a23 = (–1)2+3(4 – 9) = 5

a31 = (–1)3+1(6 – 4) = 2

a32 = (–1)3+2(4 – 4) = 0

a33 = (–1)3+3(2 – 3) = – 1

adj A = `[(-3, 5, -1),(5, -10, 5),(2, 0, -1)]^1 = [(-3, 5, 2),(5, -10, 0),(-1, 5, -1)]`

∴ A–1 = `([adj A])/|A| = 1/5[(-3, 5, 2),(5, -10, 0),(-1, 5, -1)]`

∴ X = A–1B

∴ `[(x),(y),(z)] = 1/5[(-3, 5, 2),(5, -10, 0),(-1, 5, -1)][(29),(13),(16)]`

= `1/5[(-87 + 65 + 32),(145 - 130 + 0),(-29 + 65 - 16)]`

= `1/5[(10),(15),(20)] = [(2),(3),(4)]`

Hence, x = 2, y = 3, z = 4

iii. ∴ Number of table(s) produced = 2

Number of chair(s) produced = 3

Number of cot(s) produced = 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Official

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]


If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


A square matrix A is invertible if det A is equal to ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×