Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
उत्तर
We know that (AT)−1 = (A−1)T.
\[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}Adj . A\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{vmatrix}\]
\[ = 1\left( - 1 - 8 \right) - 2\left( - 8 + 3 \right)\]
\[ = - 9 + 10\]
\[ = 1\]
\[\text{ Now, to find Adj . A}\]
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 9 \right) = - 9\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( 8 \right) = - 8\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( - 2 \right) = - 2\]
\[A_{21} = \left( - 1 \right)^{2 + 1} \left( - 8 \right) = 8\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( 7 \right) = 7 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( - 2 \right) = 2\]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( - 5 \right) = - 5\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( 4 \right) = - 4\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( - 1 \right) = - 1\]
Therefore,
\[Adj . A = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix}\]
Thus,
\[ A^{- 1} = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix} . \]
\[ \left( A^T \right)^{- 1} = \left( A^{- 1} \right)^T \]
\[ = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 9 & - 8 & - 2 \\ 8 & 7 & 2 \\ - 5 & - 4 & - 1\end{bmatrix}\]
\[\text{ Hence, }\left( A^T \right)^{- 1} = \begin{bmatrix}- 9 & - 8 & - 2 \\ 8 & 7 & 2 \\ - 5 & - 4 & - 1\end{bmatrix} .\]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If A is a singular matrix, then adj A is ______.
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
(a) 3
(b) 0
(c) − 3
(d) 1
If A is an invertible matrix, then det (A−1) is equal to ____________ .
If A and B are invertible matrices, then which of the following is not correct?
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
|adj. A| = |A|2, where A is a square matrix of order two.
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.