हिंदी

Let A = [1-21-231115] verify that [adj A]–1 = adj (A–1) (A–1)–1 = A - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = [1-21-231115] verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A
योग

उत्तर

A = [1-21-231115] 

∴ |A| = 1(15 - 1) + 2(-10 - 1) + 1(-2 - 3)

= 14 - 22 - 5

= -13

Now, A11=14,A12=11,A13=-5

A21=11,A22=4,A23=-3

A31=-5,A32=-3,A33=-1

∴ adj A = [1411-5114-3-5-3-1]

A-1=1|A|(adj A)

= -113[1411-5114-3-5-3-1]=113[-14-115-11-43531]

(i) |adj A| = 14(-4 - 9) - 11(-11 - 15)-5(-33 + 20)

= 14(-13) - 11(-26) - 5(-13)

= -183 + 286 + 65 = 169

we have,

adj(adj A) = [-1326-1326-39-13-13-13-65]

[adjA]-1=1|adjA|(adj(adjA))

= 1169[-1326-1326-39-13-13-13-65]

= 113[-12-12-3-1-1-1-5]

Now, A-1=113[-14-115-11-43531]=[-1413-1113513-1113-413313513313113]

adj(A-1)=[-4169-9169-(-11169-15169)-33169+20169-(-11169-15169)(-14169-25169)-(42169+55169)-33169+20169-(42169+55169)56169-121169]

= 1169[-1326-1326-39-13-13-13-65]=113[-12-12-3-1-1-1-5]

So, [adjA]-1=adj(A-1)

(ii) We have shown that:

A-1=113[-14-115-11-43531]

or, adjA-1=113[-12-12-3-1-1-1-5]

Now,

|A-1|=(113)3[-14×(-13)+11×(-26)+5×(-13)]

=(113)3×(-169)

=-113

(A-1)-1=adjA-1|A-1|

=1(-113)×113[-12-12-3-1-1-1-5]

= [1-21-231115] = A

Hence, (A-1)-1 = A

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.7 [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.7 | Q 8 | पृष्ठ १४२

संबंधित प्रश्न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the inverse of the matrices (if it exists).

[2-243]


Find the inverse of the matrices (if it exists).

[-15-32]


Find the inverse of the matrices (if it exists).

[10033052-1]


Find the inverse of the matrices (if it exists).

[1-1202-33-24]


If A = [31-12] show that A2 – 5A + 7I = O. Hence, find A–1.


Find the adjoint of the following matrix:
[cosαsinαsinαcosα]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
[122212221]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

[2531]

Find the inverse of the following matrix.
[123231312]


Find the inverse of the following matrix.

[125111231]

Find the inverse of the following matrix.

[001345247]

For the following pair of matrix verify that (AB)1=B1A1:

A=[3275] and B[4632]


If A=[2312] , verify that A24A+I=O, where I=[1001] and O=[0000] . Hence, find A−1.


If A=[120111010] , show that  A2=A1.


Find the inverse by using elementary row transformations:

[7143]


Find the inverse by using elementary row transformations:

[5221]


Find the inverse by using elementary row transformations:

[31027]


Find the inverse by using elementary row transformations:

[231241372]


Find the inverse by using elementary row transformations:

[213124311]


If adj A=[2341] and adj B=[1231]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


Find the inverse of the matrix [3275].


If A, B are two n × n non-singular matrices, then __________ .


If A=[a000a000a] , then the value of |adj A| is _____________ .


If A=[121112211] , then ded (adj (adj A)) is __________ .


If A5 = O such that AnI for 1n4, then (IA)1 equals ________ .


If A=13[112212x2y] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If a matrix A is such that 3A3+2A2+5A+I=0, then A1 equal to _______________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix A=[x000y000z], is _____________ .

If A = [01312x231], A–1 = [12-452-123-3212y12] then x = 1, y = –1.


|A–1| ≠ |A|–1, where A is non-singular matrix.


A square matrix A is invertible if det A is equal to ____________.


For A = [31-12], then 14A−1 is given by:


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A = [2-3532-411-2], find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.