Advertisements
Advertisements
प्रश्न
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
उत्तर
We know that, `(AB)^-1 = B^-1 A^-1`.
B = `[(1,2,-2),(-1,3,0),(0,-2,1)]`
∴ |B| = `1 xx 3 - 2 xx (-1) - 2(2)`
= 3 + 2 - 4
= 5 - 4
= 1
Now,
`A_11 = 3, A_12 = 1, A_13 = 2`
`A_21 = 2, A_22 = 1, A_23 = 2`
`A_31 = 6, A_32 = 2, A_33 = 5`
∴ adjB = `[(3,2,6),(1,1,2),(2,2,5)]`
Now,
`B^-1 = 1/|B|.adjB`
∴ `B^-1 = [(3,2,6),(1,1,2),(2,2,5)]`
∴ `(AB)^-1 = B^-1 A^-1`
= `[(3,2,6),(1,1,2),(2,2,5)][(3,-1,1),(-15,6,-5),(5,-2,2)]`
= `[(9-30+30,-3+12-12,3-10+12),(3-15+10,-1+6-4,1-5+4),(6-30+25,-2+12-10,2-10+10)]`
= `[(9,-3,5),(-2,1,0),(1,0,2)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
|A–1| ≠ |A|–1, where A is non-singular matrix.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.