Advertisements
Advertisements
प्रश्न
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
उत्तर
`A = [(2,-1,1),(-1,2,-1),(1,-1,2)]`
`A^2 = [(2,-1,1),(-1,2,-1),(1,-1,2)] [(2,-1,1),(-1,2,-1),(1,-1,2)] = [(6,-5,5),(-5,6,-5),(5,-5,6)]`
`A^3 = A^2A = [(6,-5,5),(-5,6,-5),(5,-5,6)] [(2,-1,1),(-1,2,-1),(1,-1,2)] = [(22,-21,21),(-21,22,-21),(21,-21,22)]`
LHS = A3 - 6A2 + 9A - 4I
`= [(22,-21,21),(-21,22,-21),(21,-21,22)] - 6 [(6,-5,5),(-5,6,-5),(5,-5,6)] + 9 [(2,-1,1),(-1,2,-1),(1,-1,2)] - 4 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(22,-21,21),(-21,22,-21),(21,-21,22)] - [(36,-30,30),(-30,36,-30),(30,-30,36)] + [(18,-9,9),(-9,18,-9),(9,-9,18)] - [(4,0,0),(0,4,0),(0,0,4)]`
`= [(22 - 36 + 18 - 4, -21 + 30 - 9 - 0, -21 - 30 + 9 - 0),(-21 + 30 - 9 - 0, 22 - 36 + 18 - 4, -21 - 30 + 9 - 0),(21 - 30 + 9 - 0, -21 + 30 - 9 - 0,22 - 36 + 18 - 4)]`
`= [(0,0,0),(0,0,0),(0,0,0)] = 0 = "RHS"`
A3 - 6A2 + 9A - 4I = 0
A3 - 6A2 + 9A = 4I
A2 AA-1 - 6 AA-1 + 9 AA-1 = 4IA-1
4A-1 = A2 - 6A + 9I `= [(6,-5,5),(-5,6,-5),(5,-5,6)] - 6 [(2,-1,1),(-1,2,-1),(1,-1,2)] + 9 [(1,0,0),(0,1,0),(0,0,1)]`
`= 4 [(3,1,-1),(1,3,1),(-1,1,3)]`
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find the inverse of the following matrix:
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A is an invertible matrix, then which of the following is not true ?
If A is an invertible matrix of order 3, then which of the following is not true ?
If A is a singular matrix, then adj A is ______.
If A, B are two n × n non-singular matrices, then __________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
(a) 3
(b) 0
(c) − 3
(d) 1
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.