Advertisements
Advertisements
प्रश्न
विकल्प
\[A^n = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], if n is an even natural number
\[A^n = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , if n is an odd natural number
\[A^n = \begin{bmatrix}- 1 & 0 \\ 0 & 1\end{bmatrix}\], if n ∈ N
none of these
उत्तर
\[A = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], if n is an even natural number
\[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow A \times A = I\]
\[ \Rightarrow A^{- 1} = A\]
Generally,
\[A^n = (A A^{- 1} )^{n/2}\text{ when n is even .} \]
\[ A^n = A(A A^{- 1} )^{n/2} = A\text{ when n is odd }. \]
\[\text{Thus, } A^n = I \text{ when n is even }.\]
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
For the matrix
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
prove that \[A^{- 1} = A^3\]
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by: