Advertisements
Advertisements
प्रश्न
उत्तर
\[A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}Adj . A\]
Now,
\[\left| A \right| = \begin{vmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{vmatrix}\]
\[ = - 1\left( - 1 \right) + 1\left( 1 \right)\]
\[ = 2\]
Now, to find Adj . A
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 1 \right) = - 1\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( - 1 \right) = 1\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( 1 \right) = 1 \]
\[ A_{21} = \left( - 1 \right)^{2 + 1} \left( - 1 \right) = 1\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( - 1 \right) = - 1 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( - 1 \right) = 1 \]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( 1 \right) = 1\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( - 1 \right) = 1\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( - 1 \right) = - 1 \]
Therefore,
\[Adj . A = \begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix}\]
Thus,
\[ A^{- 1} = \frac{1}{2}\begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix} . \]
Now,
\[ A^2 = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 1 + 1 & 0 + 0 + 1 & 0 + 1 + 0 \\ 0 + 0 + 1 & 1 + 0 + 1 & 1 + 0 + 0 \\ 0 + 1 + 0 & 1 + 0 + 0 & 1 + 1 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{bmatrix}\]
\[\text{ Now, to show }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right)\]
RHS
\[ = \frac{1}{2}\left( A^2 - 3I \right)\]
\[ = \frac{1}{2}\left( \begin{bmatrix}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{bmatrix} - 3\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \right)\]
\[ = \frac{1}{2}\begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix}\]
\[ = A^{- 1} \]
= LHS
\[\text{ Hence, }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
For the matrix
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If A is a singular matrix, then adj A is ______.
If for the matrix A, A3 = I, then A−1 = _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.