Advertisements
Advertisements
Question
Solution
\[A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}Adj . A\]
Now,
\[\left| A \right| = \begin{vmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{vmatrix}\]
\[ = - 1\left( - 1 \right) + 1\left( 1 \right)\]
\[ = 2\]
Now, to find Adj . A
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 1 \right) = - 1\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( - 1 \right) = 1\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( 1 \right) = 1 \]
\[ A_{21} = \left( - 1 \right)^{2 + 1} \left( - 1 \right) = 1\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( - 1 \right) = - 1 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( - 1 \right) = 1 \]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( 1 \right) = 1\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( - 1 \right) = 1\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( - 1 \right) = - 1 \]
Therefore,
\[Adj . A = \begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix}\]
Thus,
\[ A^{- 1} = \frac{1}{2}\begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix} . \]
Now,
\[ A^2 = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 1 + 1 & 0 + 0 + 1 & 0 + 1 + 0 \\ 0 + 0 + 1 & 1 + 0 + 1 & 1 + 0 + 0 \\ 0 + 1 + 0 & 1 + 0 + 0 & 1 + 1 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{bmatrix}\]
\[\text{ Now, to show }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right)\]
RHS
\[ = \frac{1}{2}\left( A^2 - 3I \right)\]
\[ = \frac{1}{2}\left( \begin{bmatrix}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{bmatrix} - 3\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \right)\]
\[ = \frac{1}{2}\begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix}\]
\[ = A^{- 1} \]
= LHS
\[\text{ Hence, }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]
APPEARS IN
RELATED QUESTIONS
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X satisfying the equation
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.