English

Let A = [1-21-231115] verify that [adj A]–1 = adj (A–1) (A–1)–1 = A - Mathematics

Advertisements
Advertisements

Question

Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A
Sum

Solution

A = `[(1,-2,1),(-2,3,1),(1,1,5)]` 

∴ |A| = 1(15 - 1) + 2(-10 - 1) + 1(-2 - 3)

= 14 - 22 - 5

= -13

Now, `A_11 = 14, A_12 = 11, A_13 = -5`

`A_21 = 11, A_22 = 4, A_23 = -3`

`A_31 = -5, A_32 = -3, A_33 = -1`

∴ adj A = `[(14,11,-5),(11,4,-3),(-5,-3,-1)]`

∴ `A^-1 = 1/|A|`(adj A)

= `-1/13[(14,11,-5),(11,4,-3),(-5,-3,-1)] = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)]`

(i) |adj A| = 14(-4 - 9) - 11(-11 - 15)-5(-33 + 20)

= 14(-13) - 11(-26) - 5(-13)

= -183 + 286 + 65 = 169

we have,

adj(adj A) = `[(-13,26,-13),(26,-39,-13),(-13,-13,-65)]`

∴ `[adj A]^-1 = 1/|adj A|(adj(adjA))`

= `1/169[(-13,26,-13),(26,-39,-13),(-13,-13,-65)]`

= `1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`

Now, `A^-1 = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)] = [(-14/13, -11/13, 5/13),(-11/13,-4/13,3/13),(5/13,3/13,1/13)]`

∴ `adj(A^-1) = [(-4/169 - 9/169, -(-11/169 - 15/169),-33/169 + 20/169),(-(-11/169 - 15/169),(-14/169 - 25/169), -(42/169 + 55/169)),(-33/169 + 20/169, -(42/169 + 55/169), 56/169 - 121/169)]`

= `1/169[(-13,26,-13),(26,-39,-13),(-13,-13,-65)] = 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`

So, `[adjA]^-1 = adj(A^-1)`. 

(ii) We have shown that:

`A^-1 = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)]`

or, `adjA^-1 = 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`

Now,

`|A^-1| = (1/13)^3[-14 xx (-13) + 11 xx (-26) + 5 xx (-13)]`

`= (1/13)^3 xx (-169) `

`= -1/13`

∴ `(A^-1)^-1 = (adjA^-1)/|A^-1| `

`= 1/((-1/13)) xx 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)] `

= `[(1,-2,1),(-2,3,1),(1,1,5)]` = A

Hence, (A-1)-1 = A

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.7 [Page 142]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.7 | Q 8 | Page 142

RELATED QUESTIONS

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If A is a singular matrix, then adj A is ______.


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

If A, B be two square matrices such that |AB| = O, then ____________.


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×