English

Find the Matrix X Satisfying the Matrix Equation X [ 5 3 − 1 − 2 ] = [ 14 7 7 7 ] - Mathematics

Advertisements
Advertisements

Question

Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]

Solution

Let: 
\[A = \begin{bmatrix} 5 & 3\\ - 1 & - 2 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 5 & 3\\ - 1 & - 2 \end{vmatrix} = - 10 + 3 = - 7 \neq 0 \]
Hence, A is invertible .
\[\text{ If }C_{ij}\text{ is a cofactor of }a_{ij}\text{ in A, then }C_{11} = - 2, C_{12} = 1, C_{21} = - 3\text{ and }C_{22} = 5 . \]
Now, 
\[adj A = \begin{bmatrix} - 2 & 1\\ - 3 & 5 \end{bmatrix}^T = \begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A = \frac{- 1}{7}\begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix} \]
Let:
\[B = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix}\]
\[ \Rightarrow \left| B \right| = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix} = 98 - 49 = 49 \neq 0 \]
Hence, B is invertible .
The given matrix equation becomes XA = B . 
\[ \Rightarrow \left( XA \right) A^{- 1} = B A^{- 1} \]
\[ \Rightarrow X\left( A A^{- 1} \right) = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix} \times \frac{- 1}{7} \times \begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix}\]
\[ \Rightarrow X = \frac{- 1}{7}\begin{bmatrix} - 28 + 7 & - 42 + 35\\ - 14 + 7 & - 21 + 35 \end{bmatrix}\]
\[ \Rightarrow X = \frac{- 1}{7}\begin{bmatrix} - 21 & - 7\\ - 7 & 14 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 3 & 1\\ 1 & - 2 \end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 31 | Page 24

RELATED QUESTIONS

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If A is an invertible matrix, then which of the following is not true ?


If A is a singular matrix, then adj A is ______.


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A and B are invertible matrices, then which of the following is not correct?


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


|adj. A| = |A|2, where A is a square matrix of order two.


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×