Advertisements
Advertisements
Question
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Solution
Let:
\[A = \begin{bmatrix} 5 & 3\\ - 1 & - 2 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 5 & 3\\ - 1 & - 2 \end{vmatrix} = - 10 + 3 = - 7 \neq 0 \]
Hence, A is invertible .
\[\text{ If }C_{ij}\text{ is a cofactor of }a_{ij}\text{ in A, then }C_{11} = - 2, C_{12} = 1, C_{21} = - 3\text{ and }C_{22} = 5 . \]
Now,
\[adj A = \begin{bmatrix} - 2 & 1\\ - 3 & 5 \end{bmatrix}^T = \begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A = \frac{- 1}{7}\begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix} \]
Let:
\[B = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix}\]
\[ \Rightarrow \left| B \right| = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix} = 98 - 49 = 49 \neq 0 \]
Hence, B is invertible .
The given matrix equation becomes XA = B .
\[ \Rightarrow \left( XA \right) A^{- 1} = B A^{- 1} \]
\[ \Rightarrow X\left( A A^{- 1} \right) = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix} \times \frac{- 1}{7} \times \begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix}\]
\[ \Rightarrow X = \frac{- 1}{7}\begin{bmatrix} - 28 + 7 & - 42 + 35\\ - 14 + 7 & - 21 + 35 \end{bmatrix}\]
\[ \Rightarrow X = \frac{- 1}{7}\begin{bmatrix} - 21 & - 7\\ - 7 & 14 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 3 & 1\\ 1 & - 2 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix, then which of the following is not true ?
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A and B are invertible matrices, then which of the following is not correct?
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.