Advertisements
Advertisements
Question
Find the matrix X for which
Solution
\[Let A = \begin{bmatrix} 3 & 2\\7 & 5 \end{bmatrix}, B = \begin{bmatrix} - 1 & 1\\ - 2 & 1 \end{bmatrix} \text{ and }C = \begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix} 3 & 2\\7 & 5 \end{vmatrix} = 15 - 14 = 1 \]
\[\left| B \right| = \begin{vmatrix} - 1 & 1\\ - 2 & 1 \end{vmatrix} = - 1 + 2 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\text{ and }\left| B \right| \neq 0\]
\[\text{ Hence, A & B are invertible, so }A^{- 1}\text{ and }B^{- 1}\text{ exist }. \]
Cofactors of matrix A are
\[ A_{11} = 5 A_{12} = - 7 A_{21} = - 2 A_{22} = 3 \]
Now,
\[adj A = \begin{bmatrix} 5 & - 7\\ - 2 & 3 \end{bmatrix}T = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix} \]
Cofactors of matrix B are
\[ B_{11} = 1 B_{12} = 2 B_{21} = - 1 B_{22} = - 1\]
Now,
\[adj B = \begin{bmatrix} 1 & 2\\ - 1 & - 1 \end{bmatrix}^T = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix} \]
The given equation becomes AXB = C
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow \left( I \right)X\left( I \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 - 2 & - 2 + 1\\ 0 + 8 & 0 - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 0 & - 1\\ 8 & - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} - 16 & 3\\ 24 & - 5 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If A is a singular matrix, then adj A is ______.
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
|A–1| ≠ |A|–1, where A is non-singular matrix.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.