English

If a = ⎡ ⎢ ⎣ 3 − 3 4 2 − 3 4 0 − 1 1 ⎤ ⎥ ⎦ , Show that a − 1 = a 3 - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]

Solution

\[\text{ We have, } A = \begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix}\]
\[ A^2 = \begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix}\begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 6 + 0 & - 9 + 9 - 4 & 12 - 12 + 4\\6 - 6 + 0 & - 6 + 9 - 4 & 8 - 12 + 4\\0 - 2 + 0 & 0 + 3 - 1 & 0 - 4 + 1 \end{bmatrix} = \begin{bmatrix} 3 & - 4 & 4\\ 0 & - 1 & 0\\ - 2 & 2 & - 3 \end{bmatrix}\]
\[\text{ Now,} A^3 = A^2 \times A^{} = \begin{bmatrix} 3 & - 4 & 4\\ 0 & - 1 & 0\\ - 2 & 2 & - 3 \end{bmatrix}\begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 8 & - 9 + 12 - 4 & 12 - 16 + 4\\ 0 - 2 + 0 & 0 + 3 + 0 & - 4\\ - 6 + 4 + 0 & 6 - 6 + 3 & - 8 + 8 - 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1 & 0\\ - 2 & 3 & - 4\\ - 2 & 3 & - 3 \end{bmatrix}\]
\[\text{ Again, }A^3 \times A = \begin{bmatrix}  1 & - 1 & 0\\ - 2 & 3 & - 4\\ - 2 & 3 & - 3 \end{bmatrix}\begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 - 2 + 0 & - 3 + 3 + 0 & 4 - 4 + 0\\ - 6 + 6 & 6 - 9 + 4 & - 8 + 12 - 4\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = I_3 [\text{ Identity matrix of order 3 }]\]
\[ \Rightarrow A^3 \times A = I_3 \]
\[ \Rightarrow A^3 = A^{- 1}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 28 | Page 24

RELATED QUESTIONS

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


For the matrix 

\[A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{bmatrix}\] , show that A (adj A) = O.

If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

|adj. A| = |A|2, where A is a square matrix of order two.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×