Advertisements
Advertisements
Question
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
Options
\[a = 1, b = 1\]
\[a = \cos 2 \theta, b = \sin 2 \theta\]
\[a = \sin 2 \theta, b = \cos 2 \theta\]
None of these
Solution
\[a = \cos 2 \theta, b = \sin 2 \theta\]
\[\begin{bmatrix}1 & \tan\theta \\ - \tan\theta & 1\end{bmatrix}^{- 1} = \frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\]
Given:-
\[ \begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan\theta \\ - \tan\theta & 1\end{bmatrix}^{- 1} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
\[ \Rightarrow \frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}\frac{1 - \tan^2 \theta}{\sec^2 \theta} & \frac{- 2\tan\theta}{\sec^2 \theta} \\ \frac{2\tan\theta}{\sec^2 \theta} & \frac{1 - \tan^2 \theta}{\sec^2 \theta}\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
On comparing, we get
\[a = \frac{1 - \tan^2 \theta}{\sec^2 \theta}\text{ and }b = \frac{2\tan\theta}{\sec^2 \theta}\]
\[ \Rightarrow a = \cos^2 \theta - \sin^2 \theta\text{ and }b = 2\sin\theta\cos\theta\]
\[ \Rightarrow a = \cos2\theta\text{ and }b = \sin2\theta\]
APPEARS IN
RELATED QUESTIONS
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X for which
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If A, B are two n × n non-singular matrices, then __________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If A is an invertible matrix, then det (A−1) is equal to ____________ .
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.