English

If A is a singular matrix, then adj A is ______. - Mathematics

Advertisements
Advertisements

Question

If A is a singular matrix, then adj A is ______.

Options

  • non-singular

  • singular

  • symmetric

  • not defined

MCQ
Fill in the Blanks

Solution

If A is a singular matrix, then adj A is singular.

 A is singular, so |A|=0.

By definition, we have

A adj(A)=O

|Aadj(A)|=|O|

|A||adj(A)|=0

|adj(A)|=0

 Hence, adj(A) is singular.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.4 | Q 5 | Page 37

RELATED QUESTIONS

Find the adjoint of the matrices.

[1-12235-201]


Verify A (adj A) = (adj A) A = |A|I.

[23-4-6]


Find the inverse of the matrices (if it exists).

[2-243]


Find the inverse of the matrices (if it exists).

[1-1202-33-24]


Find the inverse of the matrices (if it exists).

[1000cosαsinα0sinα-cosα]


For the matrix A = [11112-32-13] show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A = [2-11-12-11-12] verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Find the adjoint of the following matrix:
[3524]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

For the matrix 

A=[11123018210] , show that A (adj A) = O.

Find the inverse of the following matrix:

[cosθsinθsinθcosθ]

Find the inverse of the following matrix:

[0110]

Find the inverse of the following matrix:

[2531]

Find the inverse of the following matrix.

[211121112]

Find the inverse of the following matrix.

[001345247]

Let
F(α)=[cosαsinα0sinαcosα0001] and G(β)=[cosβ0sinβ010sinβ0cosβ]

Show that

(i) [F(α)]1=F(α)
(ii) [G(β)]1=G(β)
(iii) [F(α)G(β)]1=G(β)F(α)

Show that

A=[8524] satisfies the equation A2+4A42I=O. Hence, find A−1.

If A=[3112], show that 

A25A+7I=O.  Hence, find A−1.

 If A1=[3111565522] and B=[122130021], find (AB)1.

Find the adjoint of the matrix A=[122212221]  and hence show that A(adjA)=|A|I3


Find the inverse by using elementary row transformations:

[31027]


Find the inverse by using elementary row transformations:

[201510013]


Find the inverse by using elementary row transformations:

[334234011]


If A=[abcd],B=[1001] , find adj (AB).


If A is an invertible matrix, then which of the following is not true ?


If A=[121112211] , then ded (adj (adj A)) is __________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If A=[2132], then An= ______________ .

Find A−1, if A=[125111231] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A = [x522y311z], xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = [810008100081]


|adj. A| = |A|2, where A is a square matrix of order two.


If A, B be two square matrices such that |AB| = O, then ____________.


Find the adjoint of the matrix A =[1234].


The value of |cos(α+β)-sin(α+β)cos 2βsinαcosαsinβ-cosαsinαcosβ| is independent of ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If A = [0100], then A2023 is equal to ______.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.