Advertisements
Advertisements
Question
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
Solution
LHS `= A^2 - 5A + 7I = A A - 5A + 7I`
`= [(3,1),(-1,2)] [(3,1),(-1,2)] - 5 [(3,1),(-1,2)] + 7 [(1,0),(0,1)]`
`= [(9 - 1,3 + 2),(-3 -2,-1 + 4)] - [(15,5),(-5,10)] + [(7,0),(0,7)]`
`= [(8 - 15 + 7,5 -5+0),(-5 +5+0,3 -10+7)] - [(0,0),(0,0)] =0`
`A^2 - 5A + 7I = 0`
`= A^2 - 5A = -7I`
= (A-1A)A - 5AA-1 + 7IA-1 = 0
`= - 7"IA"^-1`
`= 7A^-1 = 5I - AI`
`= 5 [(1,0),(0,1)] - [(3,1),(-1,2)]`
`= [(5,0),(0,5)] - [(3,1),(-1,2)] = [(2,-1),(1,3)]`
`A^-1 = 1/7 [(2,-1),(1,3)]`
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
prove that \[A^{- 1} = A^3\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A and B are invertible matrices, which of the following statement is not correct.
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A and B are invertible matrices, then which of the following is not correct?
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
A square matrix A is invertible if det A is equal to ____________.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.