Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 2 \\ 3 & - 2 & 7\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 2 \\ 3 & - 2 & 7\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & - \frac{1}{2} & 2 \\ 4 & 0 & 2 \\ 3 & - 2 & 7\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying } R_1 \to \frac{1}{2} R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - \frac{1}{2} & 2 \\ 0 & 2 & - 6 \\ 0 & - \frac{1}{2} & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ - 2 & 1 & 0 \\ \frac{- 3}{2} & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - 4 R_1\text{ and }R_3 \to R_3 - 3 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - \frac{1}{2} & 2 \\ 0 & 1 & - 3 \\ 0 & - \frac{1}{2} & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ - 1 & \frac{1}{2} & 0 \\ \frac{- 3}{2} & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to \frac{1}{2} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{2} \\ 0 & 1 & - 3 \\ 0 & 0 & - \frac{1}{2}\end{bmatrix} = \begin{bmatrix}0 & \frac{1}{4} & 0 \\ - 1 & \frac{1}{2} & 0 \\ - 2 & \frac{1}{4} & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 + \frac{1}{2} R_2\text{ and }R_3 \to R_3 + \frac{1}{2} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{2} \\ 0 & 1 & - 3 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}0 & \frac{1}{4} & 0 \\ - 1 & \frac{1}{2} & 0 \\ 4 & - \frac{1}{2} & - 2\end{bmatrix} A \left[\text{ Applying }R_3 \to - 2 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}- 2 & \frac{1}{2} & 1 \\ 11 & - 1 & - 6 \\ 4 & - \frac{1}{2} & - 2\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - \frac{1}{2} R_3\text{ and }R_2 \to R_2 + 3 R_3 \right]\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix}- 2 & \frac{1}{2} & 1 \\ 11 & - 1 & - 6 \\ 4 & - \frac{1}{2} & - 2\end{bmatrix} \]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find the inverse of the following matrix.
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by: