हिंदी

If a = 1 9 ⎡ ⎢ ⎣ − 8 1 4 4 4 7 1 − 8 4 ⎤ ⎥ ⎦ , Prove that a − 1 = a 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

उत्तर

\[A = \frac{1}{9}\begin{bmatrix} - 8 & 1 & 4\\ 4 & 4 & 7\\ 1 & - 8 & 4 \end{bmatrix} = \begin{bmatrix} \frac{- 8}{9} & \frac{1}{9} & \frac{4}{9}\\\frac{4}{9} & \frac{4}{9} & \frac{7}{9}\\ \frac{1}{9} & \frac{- 8}{9} & \frac{4}{9} \end{bmatrix}\]
\[ \Rightarrow A^T = \begin{bmatrix} \frac{- 8}{9} & \frac{4}{9} & \frac{1}{9}\\\frac{1}{9} & \frac{4}{9} & \frac{- 8}{9}\\ \frac{4}{9} & \frac{7}{9} & \frac{4}{9} \end{bmatrix} = \frac{1}{9}\begin{bmatrix} - 8 & 4 & 1\\ 1 & 4 & - 8 \\ 4 & 7 & 4 \end{bmatrix} . . . (1)\]
\[\left| A \right| = \begin{vmatrix} \frac{- 8}{9} & \frac{1}{9} & \frac{4}{9}\\\frac{4}{9} & \frac{4}{9} & \frac{7}{9}\\ \frac{1}{9} & \frac{- 8}{9} & \frac{4}{9} \end{vmatrix} = \frac{1}{9 \times 9 \times 9}\begin{vmatrix} - 8 & 1 & 4\\ 4 & 4 & 7\\ 1 & - 8 & 4 \end{vmatrix}\]
\[ = \frac{1}{9 \times 9 \times 9}\left[ \left( - 8 \times 72 \right) - \left( 1 \times 9 \right) + \left\{ 4 \times \left( - 36 \right) \right\} \right]\]
\[ = \frac{1}{9 \times 9 \times 9} \times 9 \times \left\{ - 64 - 1 - 16 \right\} = - \frac{9 \times 81}{9 \times 9 \times 9} = - 1\]
\[\text{ If }C_{ij}\text{ is a cofactor of }a_{ij}\text{ such that A }= \left[ a_{ij} \right],\text{ then we have }\]
\[ C_{11} = \frac{8}{9} C {}_{12} = \frac{- 1}{9} C {}_{13} = \frac{- 4}{9}\]
\[ C_{21} = \frac{- 4}{9} C_{22} = \frac{- 4}{9} C_{23} = \frac{- 7}{9}\]
\[ C_{31} = \frac{- 1}{9} C_{32} = \frac{8}{9} C_{33} = \frac{- 4}{9}\]
Now, 
\[adj A = \begin{bmatrix} \frac{8}{9} & \frac{- 1}{9} & \frac{- 4}{9}\\\frac{- 4}{9} & \frac{- 4}{9} & \frac{- 7}{9}\\\frac{- 1}{9} & \frac{8}{9} & \frac{- 4}{9} \end{bmatrix}^T = \begin{bmatrix} \frac{8}{9} & \frac{- 4}{9} & \frac{- 1}{9} \\\frac{- 1}{9} & \frac{- 4}{9} & \frac{8}{9}\\ \frac{- 4}{9} & \frac{- 7}{9} & \frac{- 4}{9} \end{bmatrix}\]
\[ \therefore A^{- 1} = \frac{1}{\left| A \right|}adj A = - 1 \times \frac{1}{9}\begin{bmatrix} 8 & - 4 & - 1\\ - 1 & - 4 & 8 \\ - 4 & - 7 & - 4 \end{bmatrix} = \frac{1}{9}\begin{bmatrix} - 8 & 4 & 1\\1 & 4 & - 8 \\ 4 & 7 & 4 \end{bmatrix} = A^T [\text{ From } (1)]\]
\[ \Rightarrow A^{- 1} = A^T \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 27 | पृष्ठ २४

संबंधित प्रश्न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If A is an invertible matrix, then which of the following is not true ?


If A is an invertible matrix of order 3, then which of the following is not true ?


If A is a singular matrix, then adj A is ______.


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


If A and B are invertible matrices, then which of the following is not correct?


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×