मराठी

Let F ( α ) = ⎡ ⎢ ⎣ Cos α − Sin α 0 Sin α Cos α 0 0 0 1 ⎤ ⎥ ⎦ and G ( β ) = ⎡ ⎢ ⎣ Cos β 0 Sin β 0 1 0 − Sin β 0 Cos β ⎤ ⎥ ⎦ Show that [ F ( α ) ] − 1 = F ( − α ) - Mathematics

Advertisements
Advertisements

प्रश्न

Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]
बेरीज

उत्तर

(i) \[ F(\alpha) = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow F( - \alpha) = \begin{bmatrix}\cos\left( - \alpha \right) & - \sin\left( - \alpha \right) & 0 \\ \sin\left( - \alpha \right) & \cos\left( - \alpha \right) & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[Now, \]
\[ C_{11} = \begin{vmatrix}\cos\alpha & 0 \\ 0 & 1\end{vmatrix} = \cos\alpha, C_{12} = - \begin{vmatrix}\sin\alpha & 0 \\ 0 & 1\end{vmatrix} = - \sin\alpha\text{ and }C_{13} = \begin{vmatrix}\sin\alpha & \cos\alpha \\ 0 & 0\end{vmatrix} = 0\]
\[ C_{21} = - \begin{vmatrix}- \sin\alpha & 0 \\ 0 & 1\end{vmatrix} = \sin\alpha, C_{22} = \begin{vmatrix}\cos\alpha & 0 \\ 0 & 1\end{vmatrix} = \cos\alpha\text{ and }C_{23} = - \begin{vmatrix}\cos\alpha & - \sin\alpha \\ 0 & 0\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}- \sin\alpha & 0 \\ \cos\alpha & 0\end{vmatrix} = 0, C_{32} = - \begin{vmatrix}\cos\alpha & 0 \\ \sin\alpha & 0\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}\cos\alpha & - \sin\alpha \\ \sin\alpha & \cos\alpha\end{vmatrix} = 1\]
\[ \Rightarrow adj\left\{ F(\alpha) \right\} = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}^T = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow \left| F(\alpha) \right| = 1\]
\[ \therefore \left[ F\left( \alpha \right) \right]^{- 1} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} . . . \left( 1 \right)\]
\[ \Rightarrow \left[ F\left( \alpha \right) \right]^{- 1} = F( - \alpha) \]
(ii) \[ G(\beta) = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[ \Rightarrow G( - \beta) = \begin{bmatrix}\cos\left( - \beta \right) & 0 & \sin\left( - \beta \right) \\ 0 & 1 & 0 \\ - \sin\left( - \beta \right) & 0 & \cos\left( - \beta \right)\end{bmatrix} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[Now, \]
\[ C_{11} = \begin{vmatrix}1 & 0 \\ 0 & \cos\beta\end{vmatrix} = \cos\beta, C_{12} = - \begin{vmatrix}0 & 0 \\ - \sin\beta & \cos\beta\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}0 & 1 \\ - \sin\beta & 0\end{vmatrix} = \sin\beta\]
\[ C_{21} = - \begin{vmatrix}0 & \sin\beta \\ 0 & \cos\beta\end{vmatrix} = 0, C_{22} = \begin{vmatrix}\cos\beta & \sin\beta \\ - \sin\beta & \cos\beta\end{vmatrix} = 1\text{ and }C_{23} = - \begin{vmatrix}\cos\beta & 0 \\ - \sin\beta & 0\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}0 & \sin\beta \\ 1 & 0\end{vmatrix} = - \sin\beta, C_{32} = - \begin{vmatrix}\cos\beta & \sin\beta \\ 0 & 0\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}\cos\beta & 0 \\ 0 & 1\end{vmatrix} = \cos\beta\]
\[adj\left\{ G(\beta) \right\} = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}^T = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[\left| G(\beta) \right| = 1\]
\[ \therefore G(\beta )^{- 1} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix} . . . \left( 2 \right) \]
\[ \Rightarrow G(\beta )^{- 1} = = G( - \beta) \]
(iii) \[ F(\alpha) = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow F( - \alpha) = \begin{bmatrix}\cos\left( - \alpha \right) & - \sin\left( - \alpha \right) & 0 \\ \sin\left( - \alpha \right) & \cos\left( - \alpha \right) & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} . . . \left( 3 \right)\]
\[G(\beta) = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[ \Rightarrow G( - \beta) = \begin{bmatrix}\cos\left( - \beta \right) & 0 & \sin\left( - \beta \right) \\ 0 & 1 & 0 \\ - \sin\left( - \beta \right) & 0 & \cos\left( - \beta \right)\end{bmatrix} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix} . . . \left( 4 \right)\]
\[ \left[ F(\alpha)G(\beta) \right]^{- 1} = \left[ G(\beta) \right]^{- 1} \left[ F(\alpha) \right]^{- 1} \]
\[ = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} \]               [Using equation (1) and (2)]
\[ = G( - \beta)F( - \alpha) \]                 [Using equatio (3) and (4)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 16 | पृष्ठ २३

संबंधित प्रश्‍न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]


Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is an invertible matrix, then which of the following is not true ?


If A, B are two n × n non-singular matrices, then __________ .


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


If A, B be two square matrices such that |AB| = O, then ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×