Advertisements
Advertisements
प्रश्न
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
उत्तर
Let x , y and z be the investments at the rates of interest of 10%, 12% and 15% per annum respectively.
Total investment = Rs 10,000 \[\Rightarrow x + y + z = 10, 000\]
\[\text{ Income from the first investment of Rs }x = Rs\frac{10x}{100} = Rs 0 . 1x\]
\[\text{ Income from the second investment of Rs }x = Rs\frac{12y}{100} = Rs 0 . 12y\]
\[\text{ Income from the third investment of Rs }x = Rs\frac{15z}{100} = Rs 0 . 15z\]
\[ \therefore\text{ Total annual income }= Rs \left( 0 . 1x + 0 . 12y + 0 . 15z \right)\]
\[ \Rightarrow 0 . 1x + 0 . 12y + 0 . 15z = 1310 \left( \because \text{ Total annual income }= Rs 1310 \right)\]
It is given that the combined income from the first two incomes is Rs 190 short of the income from the third .
\[ \therefore 0 . 1x + 0 . 12y = 0 . 15z - 190\]
\[ \Rightarrow - 0 . 1x - 0 . 12y + 0 . 15z = 190\]
Thus, we obtain the following system of simultaneous linear equations:
\[x + y + z = 10000\]
\[0 . 1x + 0 . 12y + 0 . 15z = 1310\]
\[ - 0 . 1x - 0 . 12y + 0 . 15z = 190\]
The given system of equation can be written in matrix form as follows:
\[ \begin{bmatrix}1 & 1 & 1 \\ 0 . 1 & 0 . 12 & 0 . 15 \\ - 0 . 1 & - 0 . 12 & 0 . 15\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}10000 \\ 1310 \\ 190\end{bmatrix}\]
\[AX = B\]
Here,
\[A = \begin{bmatrix}1 & 1 & 1 \\ 0 . 1 & 0 . 12 & 0 . 15 \\ - 0 . 1 & - 0 . 12 & 0 . 15\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}10000 \\ 1310 \\ 190\end{bmatrix}\]
\[\left| A \right|=1 \left( 0 . 15 \times 0 . 12 + 0 . 15 \times 0 . 12 \right) - 1\left( 0 . 15 \times 0 . 1 + 0 . 15 \times 0 . 1 \right) + 1\left( - 0 . 1 \times 0 . 12 + 0 . 12 \times 0 . 1 \right)\]
\[ = 0 . 036 - 0 . 03 + 0\]
\[ = 0 . 006\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 . 12 & 0 . 15 \\ - 0 . 12 & 0 . 15\end{vmatrix} = 0 . 036, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}0 . 1 & 0 . 15 \\ - 0 . 1 & 0 . 15\end{vmatrix} = - 0 . 03, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}0 . 1 & 0 . 12 \\ - 0 . 1 & - 0 . 12\end{vmatrix} = 0\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ - 0 . 12 & 0 . 15\end{vmatrix} = - 0 . 27, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ - 0 . 1 & 0 . 15\end{vmatrix} = 0 . 25, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ - 0 . 1 & - 0 . 12\end{vmatrix} = 0 . 02\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 0 . 12 & 0 . 15\end{vmatrix} = 0 . 03, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 0 . 1 & 0 . 15\end{vmatrix} = - 0 . 05, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 0 . 1 & 0 . 12\end{vmatrix} = 0 . 02\]
\[adj A = \begin{bmatrix}0 . 036 & - 0 . 03 & 0 \\ - 0 . 27 & 0 . 25 & 0 . 02 \\ 0 . 03 & - 0 . 05 & 0 . 02\end{bmatrix}^T \]
\[ = \begin{bmatrix}0 . 036 & - 0 . 27 & 0 . 03 \\ - 0 . 03 & 0 . 25 & - 0 . 05 \\ 0 & 0 . 02 & 0 . 02\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{0 . 006}\begin{bmatrix}0 . 036 & - 0 . 27 & 0 . 03 \\ - 0 . 03 & 0 . 25 & - 0 . 05 \\ 0 & 0 . 02 & 0 . 02\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{0 . 006}\begin{bmatrix}0 . 036 & - 0 . 27 & 0 . 03 \\ - 0 . 03 & 0 . 25 & - 0 . 05 \\ 0 & 0 . 02 & 0 . 02\end{bmatrix}\begin{bmatrix}10000 \\ 1310 \\ 190\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{0 . 006}\begin{bmatrix}360 - 353 . 7 + 5 . 7 \\ - 300 + 327 . 5 - 9 . 5 \\ 0 + 26 . 2 + 3 . 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1000}{6}\begin{bmatrix}12 \\ 18 \\ 30\end{bmatrix}\]
\[ \therefore x = 2000, y = 3000\text{ and }z = 5000\]
Thus, the three investments are of Rs 2000, Rs 3000 and Rs 5000, respectively .
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Show that
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
|adj. A| = |A|2, where A is a square matrix of order two.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.