Advertisements
Advertisements
प्रश्न
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
उत्तर
According to the question,
\[x + y + z = 45 . . . (1)\]
\[ - x + z = 8 . . . (2)\]
\[x + z = 2y \left( \text{ Since the production of first and third product is twice the production of second product }\right)\]
\[x - 2y + z = 0 . . . (3)\]
The given system of equation can be written in matrix form as follows:
\[ \begin{bmatrix}1 & 1 & 1 \\ - 1 & 0 & 1 \\ 1 & - 2 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}45 \\ 8 \\ 0\end{bmatrix}\]
\[AX = B\]
\[A = \begin{bmatrix}1 & 1 & 1 \\ - 1 & 0 & 1 \\ 1 & - 2 & 1\end{bmatrix} X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} B = \begin{bmatrix}45 \\ 8 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right|=1 \left( - 0 + 2 \right) - 1\left( - 1 - 1 \right) + 1\left( 2 - 0 \right)\]
\[ = 2 + 2 + 2\]
\[ = 6\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & 1 \\ - 2 & 1\end{vmatrix} = 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}- 1 & 1 \\ 1 & 1\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}- 1 & 0 \\ 1 & - 2\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ - 2 & 1\end{vmatrix} = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 1 & 1\end{vmatrix} = 0, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 1 & - 2\end{vmatrix} = 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 0 & 1\end{vmatrix} = 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ - 1 & 1\end{vmatrix} = - 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ - 1 & 0\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}2 & 2 & 2 \\ - 3 & 0 & 3 \\ 1 & - 2 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 & 1 \\ 2 & 0 & - 2 \\ 2 & 3 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{6}\begin{bmatrix}2 & - 3 & 1 \\ 2 & 0 & - 2 \\ 2 & 3 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{6}\begin{bmatrix}2 & - 3 & 1 \\ 2 & 0 & - 2 \\ 2 & 3 & 1\end{bmatrix}\begin{bmatrix}45 \\ 8 \\ 0\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{6}\begin{bmatrix}90 - 24 + 0 \\ 90 + 0 + 0 \\ 90 + 24 + 0\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{6}\begin{bmatrix}66 \\ 90 \\ 114\end{bmatrix}\]
\[ \]
\[ \therefore x = 11, y = 15\text{ and }z = 19\]
Thus, the production level of first, second and third product is 11, 15 and 19, respectively .
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Show that
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Prove that :
2x − y = 17
3x + 5y = 6
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
3x + y = 5
− 6x − 2y = 9
x + 2y = 5
3x + 6y = 15
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
For what value of x, the following matrix is singular?
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of the determinant
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.