मराठी

∣ ∣ ∣ ∣ ∣ − a ( B 2 + C 2 − a 2 ) 2 B 3 2 C 3 2 a 3 − B ( C 2 + a 2 − B 2 ) 2 C 3 2 a 3 2 B 3 − C ( a 2 + B 2 − C 2 ) ∣ ∣ ∣ ∣ ∣ = a B C ( a 2 + B 2 + C 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]

उत्तर

\[∆ = \begin{vmatrix}- a( b^2 + c^2 - a^2 ) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b( c^2 + a^2 - b^2 ) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c( a^2 + b^2 - c^2 )\end{vmatrix}\]

\[ = abc\begin{vmatrix}- b^2 - c^2 + a^2 & 2 b^2 & 2 c^2 \\ 2 a^2 & - c^2 - a^2 + b^2 & 2 c^2 \\ 2 a^2 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Taking out a, b and c common from }C_1 , C_2\text{ and }|C_3 \right]\]

\[ = abc\begin{vmatrix}a^2 + b^2 + c^2 & 2 b^2 & 2 c^2 \\ a^2 + b^2 + c^2 & - c^2 - a^2 + b^2 & 2 c^2 \\ a^2 + b^2 + c^2 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Applying }C_1\text{ to }C_1 + C_2 + C_3 \right]\]

\[ = abc( a^2 + b^2 + c^2 )\begin{vmatrix}1 & 2 b^2 & 2 c^2 \\ 1 & - c^2 - a^2 + b^2 & 2 c^2 \\ 1 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Taking out }a^2 + b^2 + c \text{ common from }C_1 \right]\]

\[ = abc( a^2 + b^2 + c^2 )\begin{vmatrix}1 & 2 b^2 & 2 c^2 \\ 0 & - c^2 - a^2 - b^2 & 0 \\ 0 & 0 & - a^2 - b^2 - c^2\end{vmatrix} \left[\text{ Applying }R_2 \text{ to }R_2 - R_1 \text{ and }R_3 \text{ to }R_3 - R_1 \right]\]

\[ = abc( a^2 + b^2 + c^2 )^3 \left[\text{ Expanding }\right]\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.2 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.2 | Q 40 | पृष्ठ ६१

संबंधित प्रश्‍न

Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.


Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x = 

 


If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×