Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
उत्तर
Here,
\[A = \begin{bmatrix}8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1\end{vmatrix}\]
\[ = 8\left( 1 - 2 \right) - 4\left( 2 - 1 \right) + 3(4 - 1)\]
\[ = - 8 - 4 + 9\]
\[ = - 3\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix} = - 1, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ 1 & 1\end{vmatrix} = - 1, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 1 \\ 1 & 2\end{vmatrix} = 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}4 & 3 \\ 2 & 1\end{vmatrix} = 2, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}8 & 3 \\ 1 & 1\end{vmatrix} = 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}8 & 4 \\ 1 & 2\end{vmatrix} = - 12\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}4 & 3 \\ 1 & 1\end{vmatrix} = 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}8 & 3 \\ 2 & 1\end{vmatrix} = - 2 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}8 & 4 \\ 2 & 1\end{vmatrix} = 0\]
\[adj A = \begin{bmatrix}- 1 & - 1 & 3 \\ 2 & 5 & - 12 \\ 1 & - 2 & 0\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 1 & 2 & 1 \\ - 1 & 5 & - 2 \\ 3 & - 12 & 0\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 3}\begin{bmatrix}- 1 & 2 & 1 \\ - 1 & 5 & - 2 \\ 3 & - 12 & 0\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 3}\begin{bmatrix}- 1 & 2 & 1 \\ - 1 & 5 & - 2 \\ 3 & - 12 & 0\end{bmatrix}\begin{bmatrix}18 \\ 5 \\ 5\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 3}\begin{bmatrix}- 18 + 10 + 5 \\ - 18 + 25 - 10 \\ 54 - 60\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 3}\begin{bmatrix}- 3 \\ - 3 \\ - 6\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 3}{- 3}, y = \frac{- 3}{- 3}\text{ and }z = \frac{- 6}{- 3}\]
\[ \therefore x = 1, y = 1\text{ and }z = 2\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
3x + y = 19
3x − y = 23
3x + ay = 4
2x + ay = 2, a ≠ 0
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.