मराठी

Show that Each One of the Following Systems of Linear Equation is Inconsistent: 4x − 5y − 2z = 2 5x − 4y + 2z = −2 2x + 2y + 8z = −1 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1

उत्तर

The given system of equations can be written as follows:
AX = B 
Here,
\[ A = \begin{bmatrix}4 & - 5 & - 2 \\ 5 & - 4 & 2 \\ 2 & 2 & 8\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}2 \\ - 2 \\ - 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}4 & - 5 & - 2 \\ 5 & - 4 & 2 \\ 2 & 2 & 8\end{vmatrix}\]
\[ = 4\left( - 32 - 4 \right) + 5\left( 40 - 4 \right) - 2(10 + 8)\]
\[ = - 144 + 180 - 36\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 4 & 2 \\ 2 & 8\end{vmatrix} = 28, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}5 & 2 \\ 2 & 8\end{vmatrix} = - 36, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}5 & - 4 \\ 2 & 2\end{vmatrix} = 18\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 5 & - 2 \\ 2 & 8\end{vmatrix} = 36 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}4 & - 2 \\ 2 & 8\end{vmatrix} = 36 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}4 & - 5 \\ 2 & 2\end{vmatrix} = - 18\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 5 & - 2 \\ - 4 & 2\end{vmatrix} = - 18, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}4 & - 2 \\ 5 & 2\end{vmatrix} = - 18, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}4 & - 5 \\ 5 & - 4\end{vmatrix} = 9\]
\[adj A = \begin{bmatrix}28 & - 36 & 18 \\ 36 & 36 & - 18 \\ - 18 & - 18 & 9\end{bmatrix}^T \]
\[ = \begin{bmatrix}28 & 36 & - 18 \\ - 36 & 36 & - 18 \\ 18 & - 18 & 9\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}28 & 36 & - 18 \\ - 36 & 36 & - 18 \\ 18 & - 18 & 9\end{bmatrix}\begin{bmatrix}2 \\ - 2 \\ - 1\end{bmatrix}\]
\[ = \begin{bmatrix}56 - 72 + 18 \\ - 72 - 72 + 18 \\ 36 + 36 - 9\end{bmatrix}\]
\[ = \begin{bmatrix}2 \\ - 126 \\ 63\end{bmatrix} \neq 0\]
Hence, the given system of equations is consistent.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 4.4 | पृष्ठ १५

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

5x + 7y = − 2
4x + 6y = − 3


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×