English

Show that Each One of the Following Systems of Linear Equation is Inconsistent: 4x − 5y − 2z = 2 5x − 4y + 2z = −2 2x + 2y + 8z = −1 - Mathematics

Advertisements
Advertisements

Question

Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1

Solution

The given system of equations can be written as follows:
AX = B 
Here,
\[ A = \begin{bmatrix}4 & - 5 & - 2 \\ 5 & - 4 & 2 \\ 2 & 2 & 8\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}2 \\ - 2 \\ - 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}4 & - 5 & - 2 \\ 5 & - 4 & 2 \\ 2 & 2 & 8\end{vmatrix}\]
\[ = 4\left( - 32 - 4 \right) + 5\left( 40 - 4 \right) - 2(10 + 8)\]
\[ = - 144 + 180 - 36\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 4 & 2 \\ 2 & 8\end{vmatrix} = 28, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}5 & 2 \\ 2 & 8\end{vmatrix} = - 36, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}5 & - 4 \\ 2 & 2\end{vmatrix} = 18\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 5 & - 2 \\ 2 & 8\end{vmatrix} = 36 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}4 & - 2 \\ 2 & 8\end{vmatrix} = 36 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}4 & - 5 \\ 2 & 2\end{vmatrix} = - 18\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 5 & - 2 \\ - 4 & 2\end{vmatrix} = - 18, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}4 & - 2 \\ 5 & 2\end{vmatrix} = - 18, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}4 & - 5 \\ 5 & - 4\end{vmatrix} = 9\]
\[adj A = \begin{bmatrix}28 & - 36 & 18 \\ 36 & 36 & - 18 \\ - 18 & - 18 & 9\end{bmatrix}^T \]
\[ = \begin{bmatrix}28 & 36 & - 18 \\ - 36 & 36 & - 18 \\ 18 & - 18 & 9\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}28 & 36 & - 18 \\ - 36 & 36 & - 18 \\ 18 & - 18 & 9\end{bmatrix}\begin{bmatrix}2 \\ - 2 \\ - 1\end{bmatrix}\]
\[ = \begin{bmatrix}56 - 72 + 18 \\ - 72 - 72 + 18 \\ 36 + 36 - 9\end{bmatrix}\]
\[ = \begin{bmatrix}2 \\ - 126 \\ 63\end{bmatrix} \neq 0\]
Hence, the given system of equations is consistent.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 4.4 | Page 15

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}\left( a + 1 \right) \left( a + 2 \right) & a + 2 & 1 \\ \left( a + 2 \right) \left( a + 3 \right) & a + 3 & 1 \\ \left( a + 3 \right) \left( a + 4 \right) & a + 4 & 1\end{vmatrix} = - 2\]

 


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


3x + y = 5
− 6x − 2y = 9


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×