English

Using Determinants Show that the Following Points Are Collinear: (1, −1), (2, 1) and (4, 5) - Mathematics

Advertisements
Advertisements

Question

Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)

Solution

If the points (1, −1), (2, 1) and (4, 5) are collinear, then

\[∆ = \begin{vmatrix}1 & - 1 & 1 \\ 2 & 1 & 1 \\ 4 & 5 & 1\end{vmatrix} = 0\] 
\[ = \begin{vmatrix}1 & - 1 & 1 \\ 1 & 2 & 0 \\ 4 & 5 & 1\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\] 
\[ = \begin{vmatrix}1 & - 1 & 1 \\ 1 & 2 & 0 \\ 3 & 6 & 0\end{vmatrix} \left[\text{ Applying }R_3 \to R_3 - R_1 \right]\]
\[ = \begin{vmatrix}1 & 2 \\ 3 & 6\end{vmatrix} = 6 - 6 = 0\]

Thus, these points are collinear.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.3 [Page 71]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.3 | Q 2.2 | Page 71

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

2x − y = − 2
3x + 4y = 3


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\]  is equal to 


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×