Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
Solution
\[\text{ Let }A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix} . \]
\[\text{ Then, } A^2 = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\]
\[ = \begin{bmatrix}\cos^2 \theta - \sin^2 \theta & \cos\theta\sin\theta + \sin\theta\cos\theta \\ - \sin\theta\cos\theta - \cos\theta\sin\theta & - \sin^2 \theta + \cos^2 \theta\end{bmatrix}\]
\[ = \begin{bmatrix}\cos2\theta & \sin2\theta \\ - \sin2\theta & \cos2\theta\end{bmatrix}\]
\[\text{ Similarly, }A^n = \begin{bmatrix}\cos\left( n\theta \right) & \sin\left( n\theta \right) \\ - \sin\left( n\theta \right) & \cos\left( n\theta \right)\end{bmatrix}\]
Therefore,
\[\left| A^n \right| = \begin{vmatrix}\cos\left( n\theta \right) & \sin\left( n\theta \right) \\ - \sin\left( n\theta \right) & \cos\left( n\theta \right)\end{vmatrix}\]
\[ = \cos^2 \left( n\theta \right) + \sin^2 \left( n\theta \right)\]
\[ = 1\]
\[\text{ Hence, Det}( A^n ) = 1 .\]
APPEARS IN
RELATED QUESTIONS
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
Prove that
2x + 3y = 10
x + 6y = 4
x+ y = 5
y + z = 3
x + z = 4
3x + y = 5
− 6x − 2y = 9
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
x + y = 1
x + z = − 6
x − y − 2z = 3
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.