Advertisements
Advertisements
Question
x + y = 1
x + z = − 6
x − y − 2z = 3
Solution
These equations can be written as
x+ y + 0z = 1
x + 0y + z = − 6
x − y − 2z = 3
\[D = \begin{vmatrix}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & - 1 & - 2\end{vmatrix}\]
\[ = 1(0 + 1) - 1( - 2 - 1) + 0( - 1 - 0)\]
\[ = 4\]
\[ D_1 = \begin{vmatrix}1 & 1 & 0 \\ - 6 & 0 & 1 \\ 3 & - 1 & - 2\end{vmatrix}\]
\[ = 1(0 + 1) - 1(12 - 3) + 0(6 - 0)\]
\[ = - 8\]
\[ D_2 = \begin{vmatrix}1 & 1 & 0 \\ 1 & - 6 & 1 \\ 1 & 3 & - 2\end{vmatrix}\]
\[ = 1(12 - 3) - 1( - 2 - 1) + 0(3 + 6)\]
\[ = 12\]
\[ D_3 = \begin{vmatrix}1 & 1 & 1 \\ 1 & 0 & - 6 \\ 1 & - 1 & 3\end{vmatrix}\]
\[ = 1(0 - 6) - 1(3 + 6) + 1( - 1 - 0)\]
\[ = - 16\]
\[ \text{ Now } , \]
\[x = \frac{D_1}{D} = \frac{- 8}{4} = - 2\]
\[y = \frac{D_2}{D} = \frac{12}{4} = 3\]
\[z = \frac{D_3}{D} = \frac{- 16}{4} = - 4\]
\[ \therefore x = - 2, y = 3 \text{ and } z = - 4\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
x − 2y = 4
−3x + 5y = −7
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Given: x + 2y = 1
3x + y = 4
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
If A is a singular matrix, then write the value of |A|.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
Write the value of
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.