English

X + Y = 1 X + Z = − 6 X − Y − 2z = 3 - Mathematics

Advertisements
Advertisements

Question

x + y = 1
x + z = − 6
x − y − 2z = 3

Sum

Solution

These equations can be written as
xy + 0z = 1
x + 0y + z = − 6
x − y − 2z = 3

\[D = \begin{vmatrix}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & - 1 & - 2\end{vmatrix}\]

\[ = 1(0 + 1) - 1( - 2 - 1) + 0( - 1 - 0)\]

\[ = 4\]

\[ D_1 = \begin{vmatrix}1 & 1 & 0 \\ - 6 & 0 & 1 \\ 3 & - 1 & - 2\end{vmatrix}\]

\[ = 1(0 + 1) - 1(12 - 3) + 0(6 - 0)\]

\[ = - 8\]

\[ D_2 = \begin{vmatrix}1 & 1 & 0 \\ 1 & - 6 & 1 \\ 1 & 3 & - 2\end{vmatrix}\]

\[ = 1(12 - 3) - 1( - 2 - 1) + 0(3 + 6)\]

\[ = 12\]

\[ D_3 = \begin{vmatrix}1 & 1 & 1 \\ 1 & 0 & - 6 \\ 1 & - 1 & 3\end{vmatrix}\]

\[ = 1(0 - 6) - 1(3 + 6) + 1( - 1 - 0)\]

\[ = - 16\]

\[ \text{ Now } , \]

\[x = \frac{D_1}{D} = \frac{- 8}{4} = - 2\]

\[y = \frac{D_2}{D} = \frac{12}{4} = 3\]

\[z = \frac{D_3}{D} = \frac{- 16}{4} = - 4\]

\[ \therefore x = - 2, y = 3 \text{ and }  z = - 4\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.4 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.4 | Q 18 | Page 84

RELATED QUESTIONS

Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove the following identity:

\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


x − 2y = 4
−3x + 5y = −7


2x − y = 1
7x − 2y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


Given: x + 2y = 1
            3x + y = 4


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


If A is a singular matrix, then write the value of |A|.

 

If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×