हिंदी

X + Y = 1 X + Z = − 6 X − Y − 2z = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

x + y = 1
x + z = − 6
x − y − 2z = 3

योग

उत्तर

These equations can be written as
xy + 0z = 1
x + 0y + z = − 6
x − y − 2z = 3

D=|110101112|

=1(0+1)1(21)+0(10)

=4

D1=|110601312|

=1(0+1)1(123)+0(60)

=8

D2=|110161132|

=1(123)1(21)+0(3+6)

=12

D3=|111106113|

=1(06)1(3+6)+1(10)

=16

 Now ,

x=D1D=84=2

y=D2D=124=3

z=D3D=164=4

x=2,y=3 and z=4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.4 | Q 18 | पृष्ठ ८४

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


Solve the system of the following equations:

2x+3y+10z=4

4x-6y+5z=1

6x+9y-20x=2


Evaluate the following determinant:

|x7x5x+1|


Show that

|sin10cos10sin80cos80|=1


Evaluate

|235712341| by two methods.

 

Find the value of x, if

|2x58x|=|6583|


Evaluate the following determinant:

|132412352|


Without expanding, show that the value of the following determinant is zero:

|1aa2bc1bb2ac1cc2ab|


Without expanding, show that the value of the following determinant is zero:

|sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|


Without expanding, show that the value of the following determinant is zero:

|cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy|


Evaluate the following:

|a+xyzxa+yzxya+z|


Prove the following identity:

|2yyzx2y2z2zzxyxyz2x2x|=(x+y+z)3


If|pbcaqcabr|=0, find the value of ppa+qqb+rrc,pa,qb,rc.

 


2x − y = 1
7x − 2y = −7


Prove that :

|abc2a2a2bbca2b2c2ccab|=(a+b+c)3

 


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


If |2x+535x+29|=0


For what value of x is the matrix  [6x43x1]  singular?


If A+B+C=π, then the value of |sin(A+B+C)sin(A+C)cosCsinB0tanAcos(A+B)tan(B+C)0|  is equal to 


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


If A=[2443],X=(n1),B=(811)  and AX = B, then find n.

If A=[120213021] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


If A = [1-1230-2103], verify that A(adj A) = (adj A)A


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


Let P = [-302056901401121206014] and A = [27ω2-1-ω10-ω-ω+1] where ω = -1+i32, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.