हिंदी

X + Y + Z + 1 = 0 Ax + by + Cz + D = 0 A2x + B2y + X2z + D2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0

उत्तर

These equations can be written as 
\[x + y + z = - 1\] 
\[ax + by + cz = - d\] 
\[ a^2 x + b^2 y + x^2 z = - d^2 \] 
\[D = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix} \] 
\[ = \begin{vmatrix}1 & 0 & 0 \\ a & a - b & b - c \\ a^2 & a^2 - b^2 & b^2 - c^2\end{vmatrix} \left[\text{ Applying }C_2 \to C_1 - C_2 , C_3 \to C_2 - C_3 \right]\] 
\[\text{Taking (b - a) and (c - a) common from }C_1\text{ and }C_2 ,\text{ respectively, we get }\] 
\[ = (a - b)(b - c)\begin{vmatrix}1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & a + b & b + c\end{vmatrix}\] 
\[ = (a - b)(b - c)(c - a) \ldots(1)\] 
\[ D_1 = \begin{vmatrix}- 1 & 1 & 1 \\ - d & b & c \\ - d^2 & b^2 & c^2\end{vmatrix} = - \begin{vmatrix}1 & 1 & 1 \\ d & b & c \\ d^2 & b^2 & c^2\end{vmatrix}\] 
\[ D_1 = - (d - b) (b - c) (c - d) \left[\text{ Replacing a by d in eq }. (1) \right]\] 
\[ D_2 = \begin{vmatrix}1 & - 1 & 1 \\ a & - d & c \\ a^2 & - d^2 & c^2\end{vmatrix} = - \begin{vmatrix}1 & 1 & 1 \\ a & d & c \\ a^2 & d^2 & c^2\end{vmatrix}\] 
\[ D_2 = - (a - d)(d - c)(c - a) \left[\text{ Replacing b by d in eq }. (1) \right]\] 
\[ D_3 = \begin{vmatrix}1 & 1 & - 1 \\ a & b & - d \\ a^2 & b^2 & - d^2\end{vmatrix} = - \begin{vmatrix}1 & 1 & 1 \\ a & b & d \\ a^2 & b^2 & d^2\end{vmatrix}\] 
\[ D_3 = - (a - b)(b - d)(d - a) \left[\text{ Replacing c by d in eq }. (1) \right]\] 
Thus,
\[x = \frac{D_1}{D} = - \frac{(d - b)(b - c)(c - d)}{(a - b)(b - c)(c - a)}\] 
\[y = \frac{D_2}{D} = - \frac{(a - d)(d - c)(c - a)}{(a - b)(b - c)(c - a)}\] 
\[z = \frac{D_3}{D} = - \frac{(a - b)(b - d)(d - a)}{(a - b)(b - c)(c - a)}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.4 | Q 19 | पृष्ठ ८४

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

9x + 5y = 10
3y − 2x = 8


xy = 5
y + z = 3
x + z = 4


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


x + y = 1
x + z = − 6
x − y − 2z = 3


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×