Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
उत्तर
\[\text{ Let }\frac{1}{x}\text{ be }a,\frac{1}{y}\text{ be } b \text{ and }\frac{1}{z}\text{ be }c.\]
Here,
\[A = \begin{bmatrix}2 & 3 & 10 \\ 4 & - 6 & 5 \\ 6 & 9 & - 20\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & 3 & 10 \\ 4 & - 6 & 5 \\ 6 & 9 & - 20\end{vmatrix}\]
\[ = 2\left( 120 - 45 \right) - 3\left( - 80 - 30 \right) + 10(36 + 36)\]
\[ = 150 + 330 + 720\]
\[ = 1200\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 6 & 5 \\ 9 & - 20\end{vmatrix} = 75, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}4 & 5 \\ 6 & - 20\end{vmatrix} = 110, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}4 & - 6 \\ 6 & 9\end{vmatrix} = 72\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 10 \\ 9 & - 20\end{vmatrix} = 150, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 10 \\ 6 & - 20\end{vmatrix} = - 100, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 3 \\ 6 & 9\end{vmatrix} = 0\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 10 \\ - 6 & 5\end{vmatrix} = 75, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 10 \\ 4 & 5\end{vmatrix} = 30, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 3 \\ 4 & - 6\end{vmatrix} = - 24\]
\[adj A = \begin{bmatrix}75 & 110 & 72 \\ 150 & - 100 & 0 \\ 75 & 30 & - 24\end{bmatrix}^T \]
\[ = \begin{bmatrix}75 & 150 & 75 \\ 110 & - 100 & 30 \\ 72 & 0 & - 24\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1200} \begin{bmatrix}75 & 150 & 75 \\ 110 & - 100 & 30 \\ 72 & 0 & - 24\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{1200} \begin{bmatrix}75 & 150 & 75 \\ 110 & - 100 & 30 \\ 72 & 0 & - 24\end{bmatrix}\begin{bmatrix}4 \\ 1 \\ 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{1200}\begin{bmatrix}300 + 150 + 150 \\ 440 - 100 + 60 \\ 288 - 48\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{1200}\begin{bmatrix}600 \\ 400 \\ 240\end{bmatrix}\]
\[ \Rightarrow x = \frac{1}{a} = \frac{1200}{600}, y = \frac{1}{b} = \frac{1200}{400}\text{ and }z = \frac{1}{c} = \frac{1200}{240}\]
\[ \therefore x = 2, y = 3\text{ and }z = 5\]
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Show that
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
Prove that :
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.