Advertisements
Advertisements
प्रश्न
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
उत्तर
Matrix form of the given system of equations is,
`[(1, 1, 1),(1, -1, 1),(1, 1, -1)] [(x),(y),(z)] = [(-1),(2),(3)]`
This is of the form AX = B,
where, A = `[(1, 1, 1),(1, -1, 1),(1, 1, -1)], "X" = [(x),(y),(z)], "B" = [(-1),(2),(3)]`
Pre-multiplying AX = B by A−1, we get
A−1(AX) = A−1B
∴ (A−1A)X = A−1B
∴ IX = A−1B
∴ X = A−1B .......(i)
To determine X, we have to find A−1
|A| = `|(1, 1, 1),(1, -1, 1),(1, 1, -1)|`
= 1(1 − 1) − 1(−1 − 1) + 1(1 + 1)
= 2 + 2
= 4 ≠ 0
∴ A−1 exists.
A11 = (−1)1+1 M11 = `|(-1, 1),(1, -1)|` = 1 − 1 = 0
A12 = (−1)1+2 M12 = `-|(1, 1),(1, -1)|` = −(−1 − 1) = 2
A13 = (−1)1+3 M13 = `|(1, 1),(1, -1)|` = 1 + 1 = 2
A21 = (−1)2+1 M21 = `-|(1, 1),(1, -1)|` = − (−1 − 1) = 2
A22 = (−1)2+2 M22 = `|(1, 1),(1, -1)|` = −1 − 1 = −2
A23 = (−1)2+3 M23 = `-|(1, 1),(1, 1)|` = − (1 − 1) = 0
A31 = (−1)3+1 M31 = `|(1, 1),(-1, 1)|` = 1 + 1 = 2
A32 = (−1)3+2 M32 = `-|(1, 1),(1, 1)|` = −(1 − 1) = 0
A33 = (−1)3+3 M33 = `|(1, 1),(1, -1)|` = −1 − 1 = −2
Hence, the matrix of cofactors is
`|("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)| = [(0, 2, 2),(2, -2, 0),(2, 0, -2)]`
∴ adj A = `[(0, 2, 2),(2, -2, 0),(2, 0, -2)]`
= `2[(0, 1, 1),(1, -1, 0),(1, 0, -1)]`
∴ A−1 = `1/|"A"|` (adj A)
= `1/4 xx 2[(0, 1, 1),(1, -1, 0),(1, 0, -1)]`
∴ A−1 = `1/2[(0, 1, 1),(1, -1, 0),(1, 0, -1)]`
∴ X = `1/2[(0, 1, 1),(1, -1, 0),(1, 0, -1)] [(-1),(2),(3)]` .......[From (i)]
= `1/2[(5),(-3),(-4)]`
∴ `[(x),(y),(z)] = [(5/2),(-3/2),(-2)]`
By equality of matrices, we get
x = `5/2`, y = `-3/2`, z = −2
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Prove that
3x + ay = 4
2x + ay = 2, a ≠ 0
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
The value of the determinant
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.