Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
उत्तर
\[A = \begin{bmatrix} 1 & 2\\3 & - 1 \end{bmatrix} \]
\[B = \begin{bmatrix} 1 & 0 \\ - 1 & 0 \end{bmatrix} \]
\[AB = \begin{bmatrix} 1 & 2\\3 & - 1 \end{bmatrix}\begin{bmatrix} 1 & 0\\ - 1 & 0 \end{bmatrix} = \begin{bmatrix}1 - 2 & 0 + 0 \\ 3 + 1 & 0 + 0\end{bmatrix} = \begin{bmatrix}- 1 & 0 \\ 4 & 0\end{bmatrix}\]
\[\left| AB \right| = 0 - 0 = 0\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then