हिंदी

If a = ⎡ ⎢ ⎣ 1 1 1 0 1 3 1 − 2 1 ⎤ ⎥ ⎦ , Find A-1hence, Solve the System of Equations: X +Y + Z = 6 Y + 3z = 11 and X -2y +Z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0

योग

उत्तर

A = `[[1,1,1],[0,1,3],[1,-2,1]]`

A11 = 7 , A12 = 3, A13 = -1 

A21 = -3 , A22 = 0, A23 = +3

A31 = 2, A32 = -3, A33 = 1

|A| = 1(7) + 3 - 1= 9

`∴ A^(-1) = 1/|A|  adj A`

` = 1/9[[7,-3,2],[3,0,-3],[-1,3,1]]`

Verification 

AA-1 = I 

`= 1/9[[1,1,1],[0,1,3],[1,-2,1]] xx  [[7,-3,2],[3,0,-3],[-1,3,1]] `

`= 1/9[[9,0,0],[0,9,0],[0,0,9]]`

=I3

X +Y  + Z = 6

0X + Y + 3Z = 11

X -2Y + Z = 0

`[[1,1,1],[0,1,3],[1,-2,1]] [ [X],[Y],[Z]] =[[6],[11],[0]]` 

 

aX =b ⇒ x = A-1 b

 

`A^(-1) = 1/9 [[7,-3,2],[3,0,-3],[-1,3,1]] `

`∴ [[x],[y],[x]] =A^(-1)b`

`= 1/9 [[7,-3,2],[3,0,-3],[-1,3,1]]  [[6],[11],[0]]`

`=1/9 [[42-33],[18],[-6+33]] =1/9 [[9],[18],[27]]`

`=[[1],[2],[3]]`

∴ x =1; y =2; z = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

संबंधित प्रश्न

Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

x + 2y = 5
3x + 6y = 15


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×