हिंदी

Solve the Following System of Equations by Matrix Method: 5x + 7y + 2 = 0 4x + 6y + 3 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0

उत्तर

 The given system of equations can be written in matrix form as folllows:
\[\begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix} \binom{x}{y} = \binom{ - 2}{ - 3}\]
\[AX=B\]
Here,
\[A = \begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{ - 2}{ - 3}\]
Now,
\[\left| A \right| = \begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix} \]
\[ = 30 - 28\]
\[ = 2 \neq 0 \]
\[\text{ The given system has a unique solution given by }X = A^{- 1} B . \]
\[{ \text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( 6 \right) = 6 , C_{12} = \left( - 1 \right)^{1 + 2} \left( 4 \right) = - 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 7 \right) = - 7, C_{22} = \left( - 1 \right)^{2 + 2} \left( 5 \right)\]
\[ = 5\]
\[adj A = \begin{bmatrix}6 & - 4 \\ - 7 & 5\end{bmatrix}^T \]
\[ = \begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ \Rightarrow A^{- 1} = \frac{1}{2}\begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ = \frac{1}{2}\begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\binom{ - 2}{ - 3}\]
\[ = \frac{1}{2}\binom{ - 12 + 21}{8 - 15}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{9}{2}}{\frac{- 7}{2}}\]
\[ \therefore x = \frac{9}{2}\text{ and } y = \frac{- 7}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 1.1 | पृष्ठ १४

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×