Advertisements
Advertisements
प्रश्न
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
उत्तर
Let, A `= [(3,-1,-2),(0,2,-1),(3,-5,0)] , X = [(x),(y),(z)], B = [(2),(-1),(3)]`
`abs A = [(3,-1,-2),(0,2,-1),(3,-5,0)] = 3 [ 2 xx 0 + 5 xx (-1)] + 1 (0 + 3) - 2(0 - 6)`
`= -15 + 3 + 12 = 0`
Cofactors of the elements of `abs A`
`A_11 = abs ((2,-1),(-5,0)) = 0 - 5 = -5`
`A_12 = - abs ((0,-1),(3,0)) = -3`
`A_13 = abs ((0,2),(3,-5)) = - 6`
`A_21 = - abs ((-1,-2),(-5,0)) = 10`
`A_22 = abs ((3,-2),(3,0)) = 6`
`A_23 = - abs ((3,-1),(3,-5)) = -(- 15 + 3) = 12`
`A_31 = abs ((-1,-2),(2,-1)) = 1 + 4 = 5`
`A_32 = - abs ((3,-2),(0,-1)) = 3`
`A_33 = abs ((3,-1),(0,2)) = 6`
The cofactor matrix of `therefore abs A` is C = `[(-5,-3,-6),(10,6,12),(5,3,6)]`
`therefore adj (A) = C = [(-5,10,5),(-3,6,3),(-6,12,6)]`
(adj A) B = ` [(-5,10,5),(-3,6,3),(-6,12,6)] [(2),(-1),(3)] = [(-10-10 + 15),(-6 - 6 + 9),(-12 - 12 + 18)] = [(-5),(-3),(-6)] ne 0`
`therefore abs A = 0 "and" (adj A) B ne 0`
Hence, The system of equations is inconsistent.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Show that
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
x+ y = 5
y + z = 3
x + z = 4
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
If \[x, y \in \mathbb{R}\], then the determinant
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
System of equations x + y = 2, 2x + 2y = 3 has ______
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.