Advertisements
Advertisements
प्रश्न
If \[x, y \in \mathbb{R}\], then the determinant
विकल्प
\[\left[ - \sqrt{2}, \sqrt{2} \right]\]
\[\left[ - 1, 1 \right]\]
\[\left[ - \sqrt{2}, 1 \right]\]
\[\left[ - 1, - \sqrt{2} \right]\]
उत्तर
\[∆ = \begin{vmatrix}\cos x & - \sin x & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]
\[ = \begin{vmatrix}\cos x & - \sin x & 1 \\ \sin x & \cos x & 1 \\ 0 & 0 & \sin y - \cos y\end{vmatrix} \left[ \text{Applying }R_3 \to R_3 - \cos y R_1 + \sin y R_2 \right]\]
\[ = \left( \sin y - \cos y \right)\left( \cos^2 x + \sin^2 x \right)\]
\[ = \sin y - \cos y\]
\[ = \sqrt{2}\left( \frac{1}{\sqrt{2}}\sin y - \frac{1}{\sqrt{2}}\cos y \right)\]
\[ = \sqrt{2}\left( \cos\frac{\pi}{4}\sin y - \sin\frac{\pi}{4}\cos y \right)\]
\[ = \sqrt{2}\sin\left( y - \frac{\pi}{4} \right)\]
\[\text{ Therefore,} - \sqrt{2} \leq ∆ \leq \sqrt{2} .\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Show that
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
2x − y = 1
7x − 2y = −7
Prove that :
2x − y = − 2
3x + 4y = 3
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.