हिंदी

Solve the system of linear equations using the matrix method. x − y + z = 4 2x + y − 3z = 0 x + y + z = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2

योग

उत्तर

Given system of equations,

x - y + 2 = 4
2x + y - 3z = 0
x+ y + z = 2

The system of equations can be written as AX = B so X = A-1B

A = `[(1,-1,1),(2,1,-3),(1,1,1)], X = [(x),(y),(z)], B = [(4),(0),(2)]`

`therefore abs A = [(1,-1,1),(2,1,-3),(1,1,1)]`

`= 1 [1 + 3] - (-1) [2 + 3] + 1 [2 - 1]`

`= 1 xx 4 + 1 xx 5 + 1 xx 1`

`= 4 + 5 + 1 = 10 ne 0`

The cofactors of the elements of matrix A are as follows -

`A_11 = (-1)^(1 + 1) abs ((1,-3),(1,1)) = (-1)^2 [1 + 3] = 1 xx 4 = 4`

`A_12 = (-1)^(1 + 2) abs ((2,-3),(1,1)) = (-1)^3 [2 + 3] = -1 xx 5 = -5`

`A_13 = (-1)^(1 + 3) abs ((2,1),(1,1)) = (-1)^4 [2 - 1] = 1 xx 1 = 1`

`A_21 = (-1)^(2 + 1) abs ((-1,1),(1,1)) = (-1)^3 [-1 - 1] = -1 xx (-2) = 2`

`A_22 = (-1)^(2 + 2) abs ((1,1),(1,1)) = (-1)^4 [1 - 1] = 0`

`A_23 = (-1)^(2 + 3) abs((1,-1),(1,1)) = (-1)^5 [1 + 1] = - 1 xx 2 = -2`

`A_31 = (-1)^ (3 + 1) abs ((-1,1),(1,-3)) = (-1)^4 [3 - 1] = 1 xx 2 = 2`

`A_32 = (-1)^(3 + 2) abs ((1,1),(2,-3)) = (-1)^5 [-3 - 2] = -1 xx (- 5) = 5`

`A_33 = (-1)^(3 + 3) abs ((1,-1),(2,1)) = (-1)^6 [1 + 2] = 1 xx 3 = 3`

Hence the matrix made up of the elements of cofactors = `[(4,-5,1),(2,0,-2),(2,5,3)]`

`therefore adj A = [(4,-5,1),(2,0,-2),(2,5,3)] = [(4,2,2),(-5,0,5),(1,-2,3)]`

`A^-1 = 1/abs A (adj A)`

`= 1/10 [(4,2,2),(-5,0,5),(1,-2,3)]`

`therefore X = A^-1 B = 1/10 [(4,2,2),(-5,0,5),(1,-2,3)] [(4),(0),(2)]`

`= 1/10 [(16 + 0 + 4),(-20 + 10),(4 + 6)]`

`1/10 [(20),(-10),(10)] = [(2),(-1),(1)]`

`=> [(x),(y),(z)] = [(2),(-1),(1)]`

`=> x = 2,  y = -1   and z = 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.6 [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.6 | Q 12 | पृष्ठ १३६

संबंधित प्रश्न

Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


3x + y = 19
3x − y = 23


2x − y = − 2
3x + 4y = 3


2x + 3y = 10
x + 6y = 4


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×